Cargando…
CHEMDNER: The drugs and chemical names extraction challenge
Natural language processing (NLP) and text mining technologies for the chemical domain (ChemNLP or chemical text mining) are key to improve the access and integration of information from unstructured data such as patents or the scientific literature. Therefore, the BioCreative organizers posed the C...
Autores principales: | Krallinger, Martin, Leitner, Florian, Rabal, Obdulia, Vazquez, Miguel, Oyarzabal, Julen, Valencia, Alfonso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331685/ https://www.ncbi.nlm.nih.gov/pubmed/25810766 http://dx.doi.org/10.1186/1758-2946-7-S1-S1 |
Ejemplares similares
-
The Markyt visualisation, prediction and benchmark platform for chemical and gene entity recognition at BioCreative/CHEMDNER challenge
por: Pérez-Pérez, Martin, et al.
Publicado: (2016) -
The CHEMDNER corpus of chemicals and drugs and its annotation principles
por: Krallinger, Martin, et al.
Publicado: (2015) -
LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes
por: Cañada, Andres, et al.
Publicado: (2017) -
Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization
por: Rabal, Obdulia, et al.
Publicado: (2018) -
Overview of the protein-protein interaction annotation extraction task of BioCreative II
por: Krallinger, Martin, et al.
Publicado: (2008)