Cargando…
A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature
BACKGROUND: In order to improve information access on chemical compounds and drugs (chemical entities) described in text repositories, it is very crucial to be able to identify chemical entity mentions (CEMs) automatically within text. The CHEMDNER challenge in BioCreative IV was specially designed...
Autores principales: | Xu, Shuo, An, Xin, Zhu, Lijun, Zhang, Yunliang, Zhang, Haodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331687/ https://www.ncbi.nlm.nih.gov/pubmed/25810768 http://dx.doi.org/10.1186/1758-2946-7-S1-S11 |
Ejemplares similares
-
Anatomical entity mention recognition at literature scale
por: Pyysalo, Sampo, et al.
Publicado: (2014) -
Automated recognition of malignancy mentions in biomedical literature
por: Jin, Yang, et al.
Publicado: (2006) -
Detecting miRNA Mentions and Relations in Biomedical Literature
por: Bagewadi, Shweta, et al.
Publicado: (2015) -
Chemical entity extraction using CRF and an ensemble of extractors
por: Khabsa, Madian, et al.
Publicado: (2015) -
A cascaded approach to normalising gene mentions in biomedical literature
por: Yang, Hui, et al.
Publicado: (2007)