Cargando…
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
BACKGROUND: Chemical compounds and drugs (together called chemical entities) embedded in scientific articles are crucial for many information extraction tasks in the biomedical domain. However, only a very limited number of chemical entity recognition systems are publically available, probably due t...
Autores principales: | Tang, Buzhou, Feng, Yudong, Wang, Xiaolong, Wu, Yonghui, Zhang, Yaoyun, Jiang, Min, Wang, Jingqi, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331698/ https://www.ncbi.nlm.nih.gov/pubmed/25810779 http://dx.doi.org/10.1186/1758-2946-7-S1-S8 |
Ejemplares similares
-
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Improving deep learning method for biomedical named entity recognition by using entity definition information
por: Xiong, Ying, et al.
Publicado: (2021) -
Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
por: Tang, Buzhou, et al.
Publicado: (2013) -
CNN-based ranking for biomedical entity normalization
por: Li, Haodi, et al.
Publicado: (2017)