Cargando…
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
BACKGROUND: Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to...
Autores principales: | Munkhdalai, Tsendsuren, Li, Meijing, Batsuren, Khuyagbaatar, Park, Hyeon Ah, Choi, Nak Hyeon, Ryu, Keun Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331699/ https://www.ncbi.nlm.nih.gov/pubmed/25810780 http://dx.doi.org/10.1186/1758-2946-7-S1-S9 |
Ejemplares similares
-
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Self-training in significance space of support vectors for imbalanced biomedical event data
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021)