Cargando…
Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory
Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, gl...
Autores principales: | Sacchet, Matthew D., Prasad, Gautam, Foland-Ross, Lara C., Thompson, Paul M., Gotlib, Ian H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332161/ https://www.ncbi.nlm.nih.gov/pubmed/25762941 http://dx.doi.org/10.3389/fpsyt.2015.00021 |
Ejemplares similares
-
Structural abnormality of the corticospinal tract in major depressive disorder
por: Sacchet, Matthew D, et al.
Publicado: (2014) -
Cognitive and Neural Aspects of Information Processing in Major Depressive Disorder: An Integrative Perspective
por: Foland-Ross, Lara C., et al.
Publicado: (2012) -
Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging
por: Zhou, Cong, et al.
Publicado: (2018) -
The Bilateral Precuneus as a Potential Neuroimaging Biomarker for Right Temporal Lobe Epilepsy: A Support Vector Machine Analysis
por: Huang, Chunyan, et al.
Publicado: (2022) -
Ensemble graph neural network model for classification of major depressive disorder using whole-brain functional connectivity
por: Venkatapathy, Sujitha, et al.
Publicado: (2023)