Cargando…

Improved Lower Bounds of DNA Tags Based on a Modified Genetic Algorithm

The well-known massively parallel sequencing method is efficient and it can obtain sequence data from multiple individual samples. In order to ensure that sequencing, replication, and oligonucleotide synthesis errors do not result in tags (or barcodes) that are unrecoverable or confused, the tag seq...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Bin, Wei, Xiaopeng, Dong, Jing, Zhang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332859/
https://www.ncbi.nlm.nih.gov/pubmed/25693135
http://dx.doi.org/10.1371/journal.pone.0110640
Descripción
Sumario:The well-known massively parallel sequencing method is efficient and it can obtain sequence data from multiple individual samples. In order to ensure that sequencing, replication, and oligonucleotide synthesis errors do not result in tags (or barcodes) that are unrecoverable or confused, the tag sequences should be abundant and sufficiently different. Recently, many design methods have been proposed for correcting errors in data using error-correcting codes. The existing tag sets contain small tag sequences, so we used a modified genetic algorithm to improve the lower bound of the tag sets in this study. Compared with previous research, our algorithm is effective for designing sets of DNA tags. Moreover, the GC content determined by existing methods includes an imprecise range. Thus, we improved the GC content determination method to obtain tag sets that control the GC content in a more precise range. Finally, previous studies have only considered perfect self-complementarity. Thus, we considered the crossover between different tags and introduced an improved constraint into the design of tag sets.