Cargando…

The Dynamical Nature of Enzymatic Catalysis

[Image: see text] As is well-known, enzymes are proteins designed to accelerate specific life essential chemical reactions by many orders of magnitude. A folded protein is a highly dynamical entity, best described as a hierarchy or ensemble of interconverting conformations on all time scales from fe...

Descripción completa

Detalles Bibliográficos
Autores principales: Callender, Robert, Dyer, R. Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333057/
https://www.ncbi.nlm.nih.gov/pubmed/25539144
http://dx.doi.org/10.1021/ar5002928
_version_ 1782357977649381376
author Callender, Robert
Dyer, R. Brian
author_facet Callender, Robert
Dyer, R. Brian
author_sort Callender, Robert
collection PubMed
description [Image: see text] As is well-known, enzymes are proteins designed to accelerate specific life essential chemical reactions by many orders of magnitude. A folded protein is a highly dynamical entity, best described as a hierarchy or ensemble of interconverting conformations on all time scales from femtoseconds to minutes. We are just beginning to learn what role these dynamics play in the mechanism of chemical catalysis by enzymes due to extraordinary difficulties in characterizing the conformational space, that is, the energy landscape, of a folded protein. It seems clear now that their role is crucially important. Here we discuss approaches, based on vibrational spectroscopies of various sorts, that can reveal the energy landscape of an enzyme–substrate (Michaelis) complex and decipher which part of the typically very complicated landscape is relevant to catalysis. Vibrational spectroscopy is quite sensitive to small changes in bond order and bond length, with a resolution of 0.01 Å or less. It is this sensitivity that is crucial to its ability to discern bond reactivity. Using isotope edited IR approaches, we have studied in detail the role of conformational heterogeneity and dynamics in the catalysis of hydride transfer by LDH (lactate dehydrogenase). Upon the binding of substrate, the LDH·substrate system undergoes a search through conformational space to find a range of reactive conformations over the microsecond to millisecond time scale. The ligand is shuttled to the active site via first forming a weakly bound enzyme·ligand complex, probably consisting of several heterogeneous structures. This complex undergoes numerous conformational changes spread throughout the protein that shuttle the enzyme·substrate complex to a range of conformations where the substrate is tightly bound. This ensemble of conformations all have a propensity toward chemistry, but some are much more facile for carrying out chemistry than others. The search for these tightly bound states is clearly directed by the forces that the protein can bring to bear, very much akin to the folding process to form native protein in the first place. In fact, the conformational subspace of reactive conformations of the Michaelis complex can be described as a “collapse” of reactive substates compared with that found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure can modulate the on-enzyme reactivity. It is very difficult to account for how the dynamical nature of the ground state of the Michaelis complex modulates function by transition state concepts since dynamical disorder is not a starting feature of the theory. We find that dynamical disorder may well play a larger or similar sized role in the measured Gibbs free energy of a reaction compared with the actual energy barrier involved in the chemical event. Our findings are broadly compatible with qualitative concepts of evolutionary adaptation of function such as adaptation to varying thermal environments. Our work suggests a methodology to determine the important dynamics of the Michaelis complex.
format Online
Article
Text
id pubmed-4333057
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-43330572015-02-19 The Dynamical Nature of Enzymatic Catalysis Callender, Robert Dyer, R. Brian Acc Chem Res [Image: see text] As is well-known, enzymes are proteins designed to accelerate specific life essential chemical reactions by many orders of magnitude. A folded protein is a highly dynamical entity, best described as a hierarchy or ensemble of interconverting conformations on all time scales from femtoseconds to minutes. We are just beginning to learn what role these dynamics play in the mechanism of chemical catalysis by enzymes due to extraordinary difficulties in characterizing the conformational space, that is, the energy landscape, of a folded protein. It seems clear now that their role is crucially important. Here we discuss approaches, based on vibrational spectroscopies of various sorts, that can reveal the energy landscape of an enzyme–substrate (Michaelis) complex and decipher which part of the typically very complicated landscape is relevant to catalysis. Vibrational spectroscopy is quite sensitive to small changes in bond order and bond length, with a resolution of 0.01 Å or less. It is this sensitivity that is crucial to its ability to discern bond reactivity. Using isotope edited IR approaches, we have studied in detail the role of conformational heterogeneity and dynamics in the catalysis of hydride transfer by LDH (lactate dehydrogenase). Upon the binding of substrate, the LDH·substrate system undergoes a search through conformational space to find a range of reactive conformations over the microsecond to millisecond time scale. The ligand is shuttled to the active site via first forming a weakly bound enzyme·ligand complex, probably consisting of several heterogeneous structures. This complex undergoes numerous conformational changes spread throughout the protein that shuttle the enzyme·substrate complex to a range of conformations where the substrate is tightly bound. This ensemble of conformations all have a propensity toward chemistry, but some are much more facile for carrying out chemistry than others. The search for these tightly bound states is clearly directed by the forces that the protein can bring to bear, very much akin to the folding process to form native protein in the first place. In fact, the conformational subspace of reactive conformations of the Michaelis complex can be described as a “collapse” of reactive substates compared with that found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure can modulate the on-enzyme reactivity. It is very difficult to account for how the dynamical nature of the ground state of the Michaelis complex modulates function by transition state concepts since dynamical disorder is not a starting feature of the theory. We find that dynamical disorder may well play a larger or similar sized role in the measured Gibbs free energy of a reaction compared with the actual energy barrier involved in the chemical event. Our findings are broadly compatible with qualitative concepts of evolutionary adaptation of function such as adaptation to varying thermal environments. Our work suggests a methodology to determine the important dynamics of the Michaelis complex. American Chemical Society 2014-12-24 2015-02-17 /pmc/articles/PMC4333057/ /pubmed/25539144 http://dx.doi.org/10.1021/ar5002928 Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Callender, Robert
Dyer, R. Brian
The Dynamical Nature of Enzymatic Catalysis
title The Dynamical Nature of Enzymatic Catalysis
title_full The Dynamical Nature of Enzymatic Catalysis
title_fullStr The Dynamical Nature of Enzymatic Catalysis
title_full_unstemmed The Dynamical Nature of Enzymatic Catalysis
title_short The Dynamical Nature of Enzymatic Catalysis
title_sort dynamical nature of enzymatic catalysis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333057/
https://www.ncbi.nlm.nih.gov/pubmed/25539144
http://dx.doi.org/10.1021/ar5002928
work_keys_str_mv AT callenderrobert thedynamicalnatureofenzymaticcatalysis
AT dyerrbrian thedynamicalnatureofenzymaticcatalysis
AT callenderrobert dynamicalnatureofenzymaticcatalysis
AT dyerrbrian dynamicalnatureofenzymaticcatalysis