Cargando…
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
Accurate disease classification and biomarker discovery remain challenging tasks in biomedicine. In this paper, we develop and test a practical approach to combining evidence from multiple models when making predictions using selective Bayesian model averaging of probabilistic rules. This method is...
Autores principales: | Balasubramanian, Jeya B., Visweswaran, Shyam, Cooper, Gregory F., Gopalakrishnan, Vanathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333697/ https://www.ncbi.nlm.nih.gov/pubmed/25717394 |
Ejemplares similares
-
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
por: Lustgarten, Jonathan Lyle, et al.
Publicado: (2017) -
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018) -
Application of an efficient Bayesian discretization method to biomedical data
por: Lustgarten, Jonathan L, et al.
Publicado: (2011) -
Knowledge-based variable selection for learning rules from proteomic data
por: Lustgarten, Jonathan L, et al.
Publicado: (2009) -
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
por: Ogoe, Henry A., et al.
Publicado: (2015)