Cargando…
Feature saliency and feedback information interactively impact visual category learning
Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features r...
Autores principales: | Hammer, Rubi, Sloutsky, Vladimir, Grill-Spector, Kalanit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333777/ https://www.ncbi.nlm.nih.gov/pubmed/25745404 http://dx.doi.org/10.3389/fpsyg.2015.00074 |
Ejemplares similares
-
Impact of feature saliency on visual category learning
por: Hammer, Rubi
Publicado: (2015) -
Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement
por: Layher, Georg, et al.
Publicado: (2014) -
Strategy Development and Feedback Processing During Complex Category Learning
por: Tilton-Bolowsky, Victoria, et al.
Publicado: (2021) -
Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle
por: Weiner, Kevin S., et al.
Publicado: (2011) -
Encoding model of temporal processing in human visual cortex
por: Stigliani, Anthony, et al.
Publicado: (2017)