Cargando…
Learning simple and complex artificial grammars in the presence of a semantic reference field: effects on performance and awareness
This study investigated whether the negative effect of complexity on artificial grammar learning could be compensated by adding semantics. Participants were exposed to exemplars from a simple or a complex finite state grammar presented with or without a semantic reference field. As expected, perform...
Autores principales: | Van den Bos, Esther, Poletiek, Fenna H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333800/ https://www.ncbi.nlm.nih.gov/pubmed/25745408 http://dx.doi.org/10.3389/fpsyg.2015.00158 |
Ejemplares similares
-
Structural selection in implicit learning of artificial grammars
por: van den Bos, Esther, et al.
Publicado: (2009) -
Under What Conditions Can Recursion Be Learned? Effects of Starting Small in Artificial Grammar Learning of Center‐Embedded Structure
por: Poletiek, Fenna H., et al.
Publicado: (2018) -
Does complexity matter? Meta-analysis of learner performance in artificial grammar tasks
por: Schiff, Rachel, et al.
Publicado: (2014) -
An Entropy Model for Artificial Grammar Learning
por: Pothos, Emmanuel M.
Publicado: (2010) -
How Grammar Introduces Asymmetry Into Cognitive Structures: Compositional Semantics, Metaphors, and Schematological Hybrids
por: Gil, David, et al.
Publicado: (2019)