Cargando…
Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets
Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334495/ https://www.ncbi.nlm.nih.gov/pubmed/25693145 http://dx.doi.org/10.1371/journal.pgen.1004873 |
_version_ | 1782358194016747520 |
---|---|
author | Zheng, Fang Liao, Yi-Ji Cai, Mu-Yan Liu, Tian-Hao Chen, Shu-Peng Wu, Pei-Hong Wu, Long Bian, Xiu-Wu Guan, Xin-Yuan Zeng, Yi-Xin Yuan, Yun-Fei Kung, Hsiang-Fu Xie, Dan |
author_facet | Zheng, Fang Liao, Yi-Ji Cai, Mu-Yan Liu, Tian-Hao Chen, Shu-Peng Wu, Pei-Hong Wu, Long Bian, Xiu-Wu Guan, Xin-Yuan Zeng, Yi-Xin Yuan, Yun-Fei Kung, Hsiang-Fu Xie, Dan |
author_sort | Zheng, Fang |
collection | PubMed |
description | Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets. |
format | Online Article Text |
id | pubmed-4334495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43344952015-02-24 Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets Zheng, Fang Liao, Yi-Ji Cai, Mu-Yan Liu, Tian-Hao Chen, Shu-Peng Wu, Pei-Hong Wu, Long Bian, Xiu-Wu Guan, Xin-Yuan Zeng, Yi-Xin Yuan, Yun-Fei Kung, Hsiang-Fu Xie, Dan PLoS Genet Research Article Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets. Public Library of Science 2015-02-18 /pmc/articles/PMC4334495/ /pubmed/25693145 http://dx.doi.org/10.1371/journal.pgen.1004873 Text en © 2015 Zheng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zheng, Fang Liao, Yi-Ji Cai, Mu-Yan Liu, Tian-Hao Chen, Shu-Peng Wu, Pei-Hong Wu, Long Bian, Xiu-Wu Guan, Xin-Yuan Zeng, Yi-Xin Yuan, Yun-Fei Kung, Hsiang-Fu Xie, Dan Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title | Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title_full | Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title_fullStr | Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title_full_unstemmed | Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title_short | Systemic Delivery of MicroRNA-101 Potently Inhibits Hepatocellular Carcinoma In Vivo by Repressing Multiple Targets |
title_sort | systemic delivery of microrna-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334495/ https://www.ncbi.nlm.nih.gov/pubmed/25693145 http://dx.doi.org/10.1371/journal.pgen.1004873 |
work_keys_str_mv | AT zhengfang systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT liaoyiji systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT caimuyan systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT liutianhao systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT chenshupeng systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT wupeihong systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT wulong systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT bianxiuwu systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT guanxinyuan systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT zengyixin systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT yuanyunfei systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT kunghsiangfu systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets AT xiedan systemicdeliveryofmicrorna101potentlyinhibitshepatocellularcarcinomainvivobyrepressingmultipletargets |