Cargando…
Microstructural White Matter Tissue Characteristics Are Modulated by Homocysteine: A Diffusion Tensor Imaging Study
Homocysteine level can lead to adverse effects on the brain white matter through endothelial dysfunction, microstructural inflammation, and neurotoxin effects. Despite previously observed associations between elevated homocysteine and macroscopic structural brain changes, it is still unknown whether...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334653/ https://www.ncbi.nlm.nih.gov/pubmed/25693199 http://dx.doi.org/10.1371/journal.pone.0116330 |
Sumario: | Homocysteine level can lead to adverse effects on the brain white matter through endothelial dysfunction, microstructural inflammation, and neurotoxin effects. Despite previously observed associations between elevated homocysteine and macroscopic structural brain changes, it is still unknown whether microstructural associations of homocysteine on brain tissue properties can be observed in healthy subjects with routine MRI. To this end, we investigated potential relationships between homocysteine levels and microstructural measures computed with diffusion tensor imaging (DTI) in a cohort of 338 healthy participants. Significant positive correlations were observed between homocysteine levels and diffusivity measures in the bilateral temporal WM, the brainstem, and the bilateral cerebellar peduncle. This is the first study demonstrating that DTI is sufficiently sensitive to relate microstructural WM properties to homocysteine levels in healthy subjects. |
---|