Cargando…
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-awar...
Autores principales: | Abualsaud, Khalid, Mahmuddin, Massudi, Saleh, Mohammad, Mohamed, Amr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334942/ https://www.ncbi.nlm.nih.gov/pubmed/25759863 http://dx.doi.org/10.1155/2015/945689 |
Ejemplares similares
-
Epileptic Seizure Prediction Based on Hybrid Seek Optimization Tuned Ensemble Classifier Using EEG Signals
por: Kapoor, Bhaskar, et al.
Publicado: (2022) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
Topolnogical classifier for detecting the emergence of epileptic seizures
por: Piangerelli, Marco, et al.
Publicado: (2018) -
A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection
por: Mishra, Shruti, et al.
Publicado: (2022)