Cargando…
Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features
Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has been proposed. This method is developed in s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335143/ https://www.ncbi.nlm.nih.gov/pubmed/25709939 |
_version_ | 1782358299394441216 |
---|---|
author | Abbaspour, Hamidreza Razavi, Seyyed Mohammad Mehrshad, Nasser |
author_facet | Abbaspour, Hamidreza Razavi, Seyyed Mohammad Mehrshad, Nasser |
author_sort | Abbaspour, Hamidreza |
collection | PubMed |
description | Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has been proposed. This method is developed in such a way that it is able to select important features that are necessary for identification using analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted and then compressed using the cosine transform. The more effective features in the identification, among the characterizing features, are selected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three public ECG databases, namely, MIT-BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST-T Database, in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias. Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibits remarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulation results showed that the proposed method despite the low number of selected features has a high performance in identification task. |
format | Online Article Text |
id | pubmed-4335143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43351432015-02-23 Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features Abbaspour, Hamidreza Razavi, Seyyed Mohammad Mehrshad, Nasser J Med Signals Sens Original Article Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has been proposed. This method is developed in such a way that it is able to select important features that are necessary for identification using analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted and then compressed using the cosine transform. The more effective features in the identification, among the characterizing features, are selected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three public ECG databases, namely, MIT-BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST-T Database, in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias. Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibits remarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulation results showed that the proposed method despite the low number of selected features has a high performance in identification task. Medknow Publications & Media Pvt Ltd 2015 /pmc/articles/PMC4335143/ /pubmed/25709939 Text en Copyright: © Journal of Medical Signals and Sensors http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Abbaspour, Hamidreza Razavi, Seyyed Mohammad Mehrshad, Nasser Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title | Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title_full | Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title_fullStr | Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title_full_unstemmed | Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title_short | Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features |
title_sort | electrocardiogram based identification using a new effective intelligent selection of fused features |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335143/ https://www.ncbi.nlm.nih.gov/pubmed/25709939 |
work_keys_str_mv | AT abbaspourhamidreza electrocardiogrambasedidentificationusinganeweffectiveintelligentselectionoffusedfeatures AT razaviseyyedmohammad electrocardiogrambasedidentificationusinganeweffectiveintelligentselectionoffusedfeatures AT mehrshadnasser electrocardiogrambasedidentificationusinganeweffectiveintelligentselectionoffusedfeatures |