Cargando…
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is ac...
Autores principales: | Amin, Morteza Moradi, Kermani, Saeed, Talebi, Ardeshir, Oghli, Mostafa Ghelich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335145/ https://www.ncbi.nlm.nih.gov/pubmed/25709941 |
Ejemplares similares
-
Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine
por: Kazemi, Fatemeh, et al.
Publicado: (2016) -
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method
por: Chen, Yao-Mei, et al.
Publicado: (2022) -
Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm
por: Ghane, Narjes, et al.
Publicado: (2017) -
Automatic cardiac evaluations using a deep video object segmentation network
por: Sirjani, Nasim, et al.
Publicado: (2022) -
Classification of chronic myeloid leukemia cell subtypes based on microscopic image analysis
por: Ghane, Narjes, et al.
Publicado: (2019)