Cargando…
Assessing parameter identifiability for dynamic causal modeling of fMRI data
Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing...
Autores principales: | Arand, Carolin, Scheller, Elisa, Seeber, Benjamin, Timmer, Jens, Klöppel, Stefan, Schelter, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335185/ https://www.ncbi.nlm.nih.gov/pubmed/25750612 http://dx.doi.org/10.3389/fnins.2015.00043 |
Ejemplares similares
-
Attempted and Successful Compensation in Preclinical and Early Manifest Neurodegeneration – A Review of Task fMRI Studies
por: Scheller, Elisa, et al.
Publicado: (2014) -
Variational Bayesian causal connectivity analysis for fMRI
por: Luessi, Martin, et al.
Publicado: (2014) -
Identifying Abnormal Connectivity in Patients Using Dynamic Causal Modeling of fMRI Responses
por: Seghier, Mohamed L., et al.
Publicado: (2010) -
Missing data estimation in fMRI dynamic causal modeling
por: Zaghlool, Shaza B., et al.
Publicado: (2014) -
A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI
por: Cao, Xuefei, et al.
Publicado: (2019)