Cargando…

Two waves of anisotropic growth generate enlarged follicles in the spiny mouse

BACKGROUND: Mammals exhibit a remarkable variety of phenotypes and comparative studies using novel model species are needed to uncover the evolutionary developmental mechanisms generating this diversity. Here, we undertake a developmental biology and numerical modeling approach to investigate the de...

Descripción completa

Detalles Bibliográficos
Autores principales: Montandon, Sophie A, Tzika, Athanasia C, Martins, António F, Chopard, Bastien, Milinkovitch, Michel C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335386/
https://www.ncbi.nlm.nih.gov/pubmed/25705371
http://dx.doi.org/10.1186/2041-9139-5-33
Descripción
Sumario:BACKGROUND: Mammals exhibit a remarkable variety of phenotypes and comparative studies using novel model species are needed to uncover the evolutionary developmental mechanisms generating this diversity. Here, we undertake a developmental biology and numerical modeling approach to investigate the development of skin appendages in the spiny mouse, Acomys dimidiatus. RESULTS: We demonstrate that Acomys spines, possibly involved in display and protection, are enlarged awl hairs with a concave morphology. The Acomys spines originate from enlarged placodes that are characterized by a rapid downwards growth which results in voluminous follicles. The dermal condensation (dermal papilla) at the core of the follicle is very large and exhibits a curved geometry. Given its off-centered position, the dermal papilla generates two waves of anisotropic proliferation, first of the posterior matrix, then of the anterior inner root sheath (IRS). Higher in the follicle, the posterior and anterior cortex cross-section areas substantially decrease due to cortex cell elongation and accumulation of keratin intermediate filaments. Milder keratinization in the medulla gives rise to a foamy material that eventually collapses under the combined compression of the anterior IRS and elongation of the cortex cells. Simulations, using linear elasticity theory and the finite-element method, indicate that these processes are sufficient to replicate the time evolution of the Acomys spine layers and the final shape of the emerging spine shaft. CONCLUSIONS: Our analyses reveal how hair follicle morphogenesis has been altered during the evolution of the Acomys lineage, resulting in a shift from ancestral awl follicles to enlarged asymmetrical spines. This study contributes to a better understanding of the evolutionary developmental mechanisms that generated the great diversity of skin appendage phenotypes observed in mammals.