Cargando…
Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice
The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lympho...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335497/ https://www.ncbi.nlm.nih.gov/pubmed/25668410 http://dx.doi.org/10.1371/journal.ppat.1004642 |
_version_ | 1782358354145837056 |
---|---|
author | Duan, Susu Meliopoulos, Victoria A. McClaren, Jennifer L. Guo, Xi-Zhi J. Sanders, Catherine J. Smallwood, Heather S. Webby, Richard J. Schultz-Cherry, Stacey L. Doherty, Peter C. Thomas, Paul G. |
author_facet | Duan, Susu Meliopoulos, Victoria A. McClaren, Jennifer L. Guo, Xi-Zhi J. Sanders, Catherine J. Smallwood, Heather S. Webby, Richard J. Schultz-Cherry, Stacey L. Doherty, Peter C. Thomas, Paul G. |
author_sort | Duan, Susu |
collection | PubMed |
description | The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent K(b)PB1(703), D(b)PA(224), and D(b)NP(366) epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. |
format | Online Article Text |
id | pubmed-4335497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43354972015-03-04 Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice Duan, Susu Meliopoulos, Victoria A. McClaren, Jennifer L. Guo, Xi-Zhi J. Sanders, Catherine J. Smallwood, Heather S. Webby, Richard J. Schultz-Cherry, Stacey L. Doherty, Peter C. Thomas, Paul G. PLoS Pathog Research Article The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent K(b)PB1(703), D(b)PA(224), and D(b)NP(366) epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. Public Library of Science 2015-02-10 /pmc/articles/PMC4335497/ /pubmed/25668410 http://dx.doi.org/10.1371/journal.ppat.1004642 Text en © 2015 Duan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Duan, Susu Meliopoulos, Victoria A. McClaren, Jennifer L. Guo, Xi-Zhi J. Sanders, Catherine J. Smallwood, Heather S. Webby, Richard J. Schultz-Cherry, Stacey L. Doherty, Peter C. Thomas, Paul G. Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title | Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title_full | Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title_fullStr | Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title_full_unstemmed | Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title_short | Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice |
title_sort | diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following h7n9 influenza challenge in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335497/ https://www.ncbi.nlm.nih.gov/pubmed/25668410 http://dx.doi.org/10.1371/journal.ppat.1004642 |
work_keys_str_mv | AT duansusu diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT meliopoulosvictoriaa diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT mcclarenjenniferl diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT guoxizhij diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT sanderscatherinej diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT smallwoodheathers diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT webbyrichardj diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT schultzcherrystaceyl diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT dohertypeterc diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice AT thomaspaulg diverseheterologousprimaryinfectionsradicallyalterimmunodominancehierarchiesandclinicaloutcomesfollowingh7n9influenzachallengeinmice |