Cargando…

The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor

BACKGROUND: The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk o...

Descripción completa

Detalles Bibliográficos
Autores principales: Parmar, Priya, Krishnamurthi, Rita, Ikram, M Arfan, Hofman, Albert, Mirza, Saira S, Varakin, Yury, Kravchenko, Michael, Piradov, Michael, Thrift, Amanda G, Norrving, Bo, Wang, Wenzhi, Mandal, Dipes Kumar, Barker-Collo, Suzanne, Sahathevan, Ramesh, Davis, Stephen, Saposnik, Gustavo, Kivipelto, Miia, Sindi, Shireen, Bornstein, Natan M, Giroud, Maurice, Béjot, Yannick, Brainin, Michael, Poulton, Richie, Narayan, K M Venkat, Correia, Manuel, Freire, António, Kokubo, Yoshihiro, Wiebers, David, Mensah, George, BinDhim, Nasser F, Barber, P Alan, Pandian, Jeyaraj Durai, Hankey, Graeme J, Mehndiratta, Man Mohan, Azhagammal, Shobhana, Ibrahim, Norlinah Mohd, Abbott, Max, Rush, Elaine, Hume, Patria, Hussein, Tasleem, Bhattacharjee, Rohit, Purohit, Mitali, Feigin, Valery L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335600/
https://www.ncbi.nlm.nih.gov/pubmed/25491651
http://dx.doi.org/10.1111/ijs.12411
_version_ 1782358370902081536
author Parmar, Priya
Krishnamurthi, Rita
Ikram, M Arfan
Hofman, Albert
Mirza, Saira S
Varakin, Yury
Kravchenko, Michael
Piradov, Michael
Thrift, Amanda G
Norrving, Bo
Wang, Wenzhi
Mandal, Dipes Kumar
Barker-Collo, Suzanne
Sahathevan, Ramesh
Davis, Stephen
Saposnik, Gustavo
Kivipelto, Miia
Sindi, Shireen
Bornstein, Natan M
Giroud, Maurice
Béjot, Yannick
Brainin, Michael
Poulton, Richie
Narayan, K M Venkat
Correia, Manuel
Freire, António
Kokubo, Yoshihiro
Wiebers, David
Mensah, George
BinDhim, Nasser F
Barber, P Alan
Pandian, Jeyaraj Durai
Hankey, Graeme J
Mehndiratta, Man Mohan
Azhagammal, Shobhana
Ibrahim, Norlinah Mohd
Abbott, Max
Rush, Elaine
Hume, Patria
Hussein, Tasleem
Bhattacharjee, Rohit
Purohit, Mitali
Feigin, Valery L
author_facet Parmar, Priya
Krishnamurthi, Rita
Ikram, M Arfan
Hofman, Albert
Mirza, Saira S
Varakin, Yury
Kravchenko, Michael
Piradov, Michael
Thrift, Amanda G
Norrving, Bo
Wang, Wenzhi
Mandal, Dipes Kumar
Barker-Collo, Suzanne
Sahathevan, Ramesh
Davis, Stephen
Saposnik, Gustavo
Kivipelto, Miia
Sindi, Shireen
Bornstein, Natan M
Giroud, Maurice
Béjot, Yannick
Brainin, Michael
Poulton, Richie
Narayan, K M Venkat
Correia, Manuel
Freire, António
Kokubo, Yoshihiro
Wiebers, David
Mensah, George
BinDhim, Nasser F
Barber, P Alan
Pandian, Jeyaraj Durai
Hankey, Graeme J
Mehndiratta, Man Mohan
Azhagammal, Shobhana
Ibrahim, Norlinah Mohd
Abbott, Max
Rush, Elaine
Hume, Patria
Hussein, Tasleem
Bhattacharjee, Rohit
Purohit, Mitali
Feigin, Valery L
author_sort Parmar, Priya
collection PubMed
description BACKGROUND: The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. METHODS: 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R(2) statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. RESULTS: The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males – 59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P < 0·006). CONCLUSIONS: The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more accurately predict stroke, particularly by identifying robust ethnic/race ethnicity group and country specific risk factors.
format Online
Article
Text
id pubmed-4335600
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-43356002015-03-04 The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor Parmar, Priya Krishnamurthi, Rita Ikram, M Arfan Hofman, Albert Mirza, Saira S Varakin, Yury Kravchenko, Michael Piradov, Michael Thrift, Amanda G Norrving, Bo Wang, Wenzhi Mandal, Dipes Kumar Barker-Collo, Suzanne Sahathevan, Ramesh Davis, Stephen Saposnik, Gustavo Kivipelto, Miia Sindi, Shireen Bornstein, Natan M Giroud, Maurice Béjot, Yannick Brainin, Michael Poulton, Richie Narayan, K M Venkat Correia, Manuel Freire, António Kokubo, Yoshihiro Wiebers, David Mensah, George BinDhim, Nasser F Barber, P Alan Pandian, Jeyaraj Durai Hankey, Graeme J Mehndiratta, Man Mohan Azhagammal, Shobhana Ibrahim, Norlinah Mohd Abbott, Max Rush, Elaine Hume, Patria Hussein, Tasleem Bhattacharjee, Rohit Purohit, Mitali Feigin, Valery L Int J Stroke Research BACKGROUND: The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. METHODS: 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R(2) statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. RESULTS: The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males – 59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P < 0·006). CONCLUSIONS: The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more accurately predict stroke, particularly by identifying robust ethnic/race ethnicity group and country specific risk factors. BlackWell Publishing Ltd 2015-02 2014-12-10 /pmc/articles/PMC4335600/ /pubmed/25491651 http://dx.doi.org/10.1111/ijs.12411 Text en © 2014 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Parmar, Priya
Krishnamurthi, Rita
Ikram, M Arfan
Hofman, Albert
Mirza, Saira S
Varakin, Yury
Kravchenko, Michael
Piradov, Michael
Thrift, Amanda G
Norrving, Bo
Wang, Wenzhi
Mandal, Dipes Kumar
Barker-Collo, Suzanne
Sahathevan, Ramesh
Davis, Stephen
Saposnik, Gustavo
Kivipelto, Miia
Sindi, Shireen
Bornstein, Natan M
Giroud, Maurice
Béjot, Yannick
Brainin, Michael
Poulton, Richie
Narayan, K M Venkat
Correia, Manuel
Freire, António
Kokubo, Yoshihiro
Wiebers, David
Mensah, George
BinDhim, Nasser F
Barber, P Alan
Pandian, Jeyaraj Durai
Hankey, Graeme J
Mehndiratta, Man Mohan
Azhagammal, Shobhana
Ibrahim, Norlinah Mohd
Abbott, Max
Rush, Elaine
Hume, Patria
Hussein, Tasleem
Bhattacharjee, Rohit
Purohit, Mitali
Feigin, Valery L
The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title_full The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title_fullStr The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title_full_unstemmed The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title_short The Stroke Riskometer™ App: Validation of a data collection tool and stroke risk predictor
title_sort stroke riskometer™ app: validation of a data collection tool and stroke risk predictor
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335600/
https://www.ncbi.nlm.nih.gov/pubmed/25491651
http://dx.doi.org/10.1111/ijs.12411
work_keys_str_mv AT parmarpriya thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT krishnamurthirita thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT ikrammarfan thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT hofmanalbert thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mirzasairas thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT varakinyury thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kravchenkomichael thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT piradovmichael thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT thriftamandag thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT norrvingbo thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT wangwenzhi thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mandaldipeskumar thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT barkercollosuzanne thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT sahathevanramesh thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT davisstephen thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT saposnikgustavo thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kivipeltomiia thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT sindishireen thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bornsteinnatanm thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT giroudmaurice thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bejotyannick thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT braininmichael thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT poultonrichie thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT narayankmvenkat thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT correiamanuel thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT freireantonio thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kokuboyoshihiro thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT wiebersdavid thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mensahgeorge thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bindhimnasserf thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT barberpalan thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT pandianjeyarajdurai thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT hankeygraemej thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mehndirattamanmohan thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT azhagammalshobhana thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT ibrahimnorlinahmohd thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT abbottmax thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT rushelaine thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT humepatria thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT husseintasleem thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bhattacharjeerohit thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT purohitmitali thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT feiginvaleryl thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT thestrokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT parmarpriya strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT krishnamurthirita strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT ikrammarfan strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT hofmanalbert strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mirzasairas strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT varakinyury strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kravchenkomichael strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT piradovmichael strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT thriftamandag strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT norrvingbo strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT wangwenzhi strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mandaldipeskumar strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT barkercollosuzanne strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT sahathevanramesh strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT davisstephen strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT saposnikgustavo strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kivipeltomiia strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT sindishireen strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bornsteinnatanm strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT giroudmaurice strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bejotyannick strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT braininmichael strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT poultonrichie strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT narayankmvenkat strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT correiamanuel strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT freireantonio strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT kokuboyoshihiro strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT wiebersdavid strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mensahgeorge strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bindhimnasserf strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT barberpalan strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT pandianjeyarajdurai strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT hankeygraemej strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT mehndirattamanmohan strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT azhagammalshobhana strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT ibrahimnorlinahmohd strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT abbottmax strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT rushelaine strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT humepatria strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT husseintasleem strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT bhattacharjeerohit strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT purohitmitali strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT feiginvaleryl strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor
AT strokeriskometerappvalidationofadatacollectiontoolandstrokeriskpredictor