Cargando…
Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling
BACKGROUND: Over the past three decades, obesity-related diseases have increased tremendously in China, and are now the leading causes of morbidity and mortality. Patterns of weight change can be used to predict risk of obesity-related diseases, increase understanding of etiology of disease risk, id...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336139/ https://www.ncbi.nlm.nih.gov/pubmed/25699674 http://dx.doi.org/10.1371/journal.pone.0116190 |
_version_ | 1782358431850561536 |
---|---|
author | Paynter, Lauren Koehler, Elizabeth Howard, Annie Green Herring, Amy H. Gordon-Larsen, Penny |
author_facet | Paynter, Lauren Koehler, Elizabeth Howard, Annie Green Herring, Amy H. Gordon-Larsen, Penny |
author_sort | Paynter, Lauren |
collection | PubMed |
description | BACKGROUND: Over the past three decades, obesity-related diseases have increased tremendously in China, and are now the leading causes of morbidity and mortality. Patterns of weight change can be used to predict risk of obesity-related diseases, increase understanding of etiology of disease risk, identify groups at particularly high risk, and shape prevention strategies. METHODS: Latent class trajectory modeling was used to compute weight change trajectories for adults aged 18 to 66 using the China Health and Nutrition Survey (CHNS) data (n = 12,611). Weight change trajectories were computed separately for males and females by age group at baseline due to differential age-related patterns of weight gain in China with urbanization. Generalized linear mixed effects models examined the association between weight change trajectories and baseline characteristics including urbanicity, BMI category, age, and year of study entry. RESULTS: Trajectory classes were identified for each of six age-sex subgroups corresponding to various degrees of weight loss, maintenance and weight gain. Baseline BMI status was a significant predictor of trajectory membership for all age-sex subgroups. Baseline overweight/obesity increased odds of following ‘initial loss with maintenance’ trajectories. We found no significant association between baseline urbanization and trajectory membership after controlling for other covariates. CONCLUSION: Trajectory analysis identified patterns of weight change for age by gender groups. Lack of association between baseline urbanization status and trajectory membership suggests that living in a rural environment at baseline was not protective. Analyses identified age-specific nuances in weight change patterns, pointing to the importance of subgroup analyses in future research. |
format | Online Article Text |
id | pubmed-4336139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43361392015-02-24 Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling Paynter, Lauren Koehler, Elizabeth Howard, Annie Green Herring, Amy H. Gordon-Larsen, Penny PLoS One Research Article BACKGROUND: Over the past three decades, obesity-related diseases have increased tremendously in China, and are now the leading causes of morbidity and mortality. Patterns of weight change can be used to predict risk of obesity-related diseases, increase understanding of etiology of disease risk, identify groups at particularly high risk, and shape prevention strategies. METHODS: Latent class trajectory modeling was used to compute weight change trajectories for adults aged 18 to 66 using the China Health and Nutrition Survey (CHNS) data (n = 12,611). Weight change trajectories were computed separately for males and females by age group at baseline due to differential age-related patterns of weight gain in China with urbanization. Generalized linear mixed effects models examined the association between weight change trajectories and baseline characteristics including urbanicity, BMI category, age, and year of study entry. RESULTS: Trajectory classes were identified for each of six age-sex subgroups corresponding to various degrees of weight loss, maintenance and weight gain. Baseline BMI status was a significant predictor of trajectory membership for all age-sex subgroups. Baseline overweight/obesity increased odds of following ‘initial loss with maintenance’ trajectories. We found no significant association between baseline urbanization and trajectory membership after controlling for other covariates. CONCLUSION: Trajectory analysis identified patterns of weight change for age by gender groups. Lack of association between baseline urbanization status and trajectory membership suggests that living in a rural environment at baseline was not protective. Analyses identified age-specific nuances in weight change patterns, pointing to the importance of subgroup analyses in future research. Public Library of Science 2015-02-20 /pmc/articles/PMC4336139/ /pubmed/25699674 http://dx.doi.org/10.1371/journal.pone.0116190 Text en © 2015 Paynter et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Paynter, Lauren Koehler, Elizabeth Howard, Annie Green Herring, Amy H. Gordon-Larsen, Penny Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title | Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title_full | Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title_fullStr | Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title_full_unstemmed | Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title_short | Characterizing Long-Term Patterns of Weight Change in China Using Latent Class Trajectory Modeling |
title_sort | characterizing long-term patterns of weight change in china using latent class trajectory modeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336139/ https://www.ncbi.nlm.nih.gov/pubmed/25699674 http://dx.doi.org/10.1371/journal.pone.0116190 |
work_keys_str_mv | AT paynterlauren characterizinglongtermpatternsofweightchangeinchinausinglatentclasstrajectorymodeling AT koehlerelizabeth characterizinglongtermpatternsofweightchangeinchinausinglatentclasstrajectorymodeling AT howardanniegreen characterizinglongtermpatternsofweightchangeinchinausinglatentclasstrajectorymodeling AT herringamyh characterizinglongtermpatternsofweightchangeinchinausinglatentclasstrajectorymodeling AT gordonlarsenpenny characterizinglongtermpatternsofweightchangeinchinausinglatentclasstrajectorymodeling |