Cargando…

Comparative analysis of regulatory information and circuits across distant species

Despite the large evolutionary distances, metazoan species show remarkable commonalities, which has helped establish fly and worm as model organisms for human biology(1,2). Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative an...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyle, Alan P., Araya, Carlos L., Brdlik, Cathleen, Cayting, Philip, Cheng, Chao, Cheng, Yong, Gardner, Kathryn, Hillier, LaDeana, Janette, Judith, Jiang, Lixia, Kasper, Dionna, Kawli, Trupti, Kheradpour, Pouya, Kundaje, Anshul, Li, Jingyi Jessica, Ma, Lijia, Niu, Wei, Rehm, E. Jay, Rozowsky, Joel, Slattery, Matthew, Spokony, Rebecca, Terrell, Robert, Vafeados, Dionne, Wang, Daifeng, Weisdepp, Peter, Wu, Yi-Chieh, Xie, Dan, Yan, Koon-Kiu, Feingold, Elise A., Good, Peter J., Pazin, Michael J., Huang, Haiyan, Bickel, Peter J., Brenner, Steven E., Reinke, Valerie, Waterston, Robert H., Gerstein, Mark, White, Kevin P., Kellis, Manolis, Snyder, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/
https://www.ncbi.nlm.nih.gov/pubmed/25164757
http://dx.doi.org/10.1038/nature13668
_version_ 1782358485454815232
author Boyle, Alan P.
Araya, Carlos L.
Brdlik, Cathleen
Cayting, Philip
Cheng, Chao
Cheng, Yong
Gardner, Kathryn
Hillier, LaDeana
Janette, Judith
Jiang, Lixia
Kasper, Dionna
Kawli, Trupti
Kheradpour, Pouya
Kundaje, Anshul
Li, Jingyi Jessica
Ma, Lijia
Niu, Wei
Rehm, E. Jay
Rozowsky, Joel
Slattery, Matthew
Spokony, Rebecca
Terrell, Robert
Vafeados, Dionne
Wang, Daifeng
Weisdepp, Peter
Wu, Yi-Chieh
Xie, Dan
Yan, Koon-Kiu
Feingold, Elise A.
Good, Peter J.
Pazin, Michael J.
Huang, Haiyan
Bickel, Peter J.
Brenner, Steven E.
Reinke, Valerie
Waterston, Robert H.
Gerstein, Mark
White, Kevin P.
Kellis, Manolis
Snyder, Michael
author_facet Boyle, Alan P.
Araya, Carlos L.
Brdlik, Cathleen
Cayting, Philip
Cheng, Chao
Cheng, Yong
Gardner, Kathryn
Hillier, LaDeana
Janette, Judith
Jiang, Lixia
Kasper, Dionna
Kawli, Trupti
Kheradpour, Pouya
Kundaje, Anshul
Li, Jingyi Jessica
Ma, Lijia
Niu, Wei
Rehm, E. Jay
Rozowsky, Joel
Slattery, Matthew
Spokony, Rebecca
Terrell, Robert
Vafeados, Dionne
Wang, Daifeng
Weisdepp, Peter
Wu, Yi-Chieh
Xie, Dan
Yan, Koon-Kiu
Feingold, Elise A.
Good, Peter J.
Pazin, Michael J.
Huang, Haiyan
Bickel, Peter J.
Brenner, Steven E.
Reinke, Valerie
Waterston, Robert H.
Gerstein, Mark
White, Kevin P.
Kellis, Manolis
Snyder, Michael
author_sort Boyle, Alan P.
collection PubMed
description Despite the large evolutionary distances, metazoan species show remarkable commonalities, which has helped establish fly and worm as model organisms for human biology(1,2). Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. We mapped the genome-wide binding locations of 165 human, 93 worm, and 52 fly transcription-regulatory factors (RFs) generating a total of 1,019 data sets from diverse cell-types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous RF families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding in the regulatory underpinnings of model organism biology and how these relate to human biology, development, and disease.
format Online
Article
Text
id pubmed-4336544
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-43365442015-02-28 Comparative analysis of regulatory information and circuits across distant species Boyle, Alan P. Araya, Carlos L. Brdlik, Cathleen Cayting, Philip Cheng, Chao Cheng, Yong Gardner, Kathryn Hillier, LaDeana Janette, Judith Jiang, Lixia Kasper, Dionna Kawli, Trupti Kheradpour, Pouya Kundaje, Anshul Li, Jingyi Jessica Ma, Lijia Niu, Wei Rehm, E. Jay Rozowsky, Joel Slattery, Matthew Spokony, Rebecca Terrell, Robert Vafeados, Dionne Wang, Daifeng Weisdepp, Peter Wu, Yi-Chieh Xie, Dan Yan, Koon-Kiu Feingold, Elise A. Good, Peter J. Pazin, Michael J. Huang, Haiyan Bickel, Peter J. Brenner, Steven E. Reinke, Valerie Waterston, Robert H. Gerstein, Mark White, Kevin P. Kellis, Manolis Snyder, Michael Nature Article Despite the large evolutionary distances, metazoan species show remarkable commonalities, which has helped establish fly and worm as model organisms for human biology(1,2). Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. We mapped the genome-wide binding locations of 165 human, 93 worm, and 52 fly transcription-regulatory factors (RFs) generating a total of 1,019 data sets from diverse cell-types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous RF families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding in the regulatory underpinnings of model organism biology and how these relate to human biology, development, and disease. 2014-08-28 /pmc/articles/PMC4336544/ /pubmed/25164757 http://dx.doi.org/10.1038/nature13668 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Boyle, Alan P.
Araya, Carlos L.
Brdlik, Cathleen
Cayting, Philip
Cheng, Chao
Cheng, Yong
Gardner, Kathryn
Hillier, LaDeana
Janette, Judith
Jiang, Lixia
Kasper, Dionna
Kawli, Trupti
Kheradpour, Pouya
Kundaje, Anshul
Li, Jingyi Jessica
Ma, Lijia
Niu, Wei
Rehm, E. Jay
Rozowsky, Joel
Slattery, Matthew
Spokony, Rebecca
Terrell, Robert
Vafeados, Dionne
Wang, Daifeng
Weisdepp, Peter
Wu, Yi-Chieh
Xie, Dan
Yan, Koon-Kiu
Feingold, Elise A.
Good, Peter J.
Pazin, Michael J.
Huang, Haiyan
Bickel, Peter J.
Brenner, Steven E.
Reinke, Valerie
Waterston, Robert H.
Gerstein, Mark
White, Kevin P.
Kellis, Manolis
Snyder, Michael
Comparative analysis of regulatory information and circuits across distant species
title Comparative analysis of regulatory information and circuits across distant species
title_full Comparative analysis of regulatory information and circuits across distant species
title_fullStr Comparative analysis of regulatory information and circuits across distant species
title_full_unstemmed Comparative analysis of regulatory information and circuits across distant species
title_short Comparative analysis of regulatory information and circuits across distant species
title_sort comparative analysis of regulatory information and circuits across distant species
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336544/
https://www.ncbi.nlm.nih.gov/pubmed/25164757
http://dx.doi.org/10.1038/nature13668
work_keys_str_mv AT boylealanp comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT arayacarlosl comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT brdlikcathleen comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT caytingphilip comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT chengchao comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT chengyong comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT gardnerkathryn comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT hillierladeana comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT janettejudith comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT jianglixia comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT kasperdionna comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT kawlitrupti comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT kheradpourpouya comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT kundajeanshul comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT lijingyijessica comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT malijia comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT niuwei comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT rehmejay comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT rozowskyjoel comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT slatterymatthew comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT spokonyrebecca comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT terrellrobert comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT vafeadosdionne comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT wangdaifeng comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT weisdepppeter comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT wuyichieh comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT xiedan comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT yankoonkiu comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT feingoldelisea comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT goodpeterj comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT pazinmichaelj comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT huanghaiyan comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT bickelpeterj comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT brennerstevene comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT reinkevalerie comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT waterstonroberth comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT gersteinmark comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT whitekevinp comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT kellismanolis comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies
AT snydermichael comparativeanalysisofregulatoryinformationandcircuitsacrossdistantspecies