Cargando…

Melatonin improves development of early mouse embryos impaired by actinomycin-D and TNF-α

BACKGROUND: Melatonin, a reactive oxygen species (ROS) scavenger and an antioxidant, has been shown that can inhibit apoptosis. Administration of melatonin may improve embryo development in assisted reproductive technology (ART). OBJECTIVE: The aim of this study was to evaluate the role of melatonin...

Descripción completa

Detalles Bibliográficos
Autores principales: Niknafs, Behrooz, Mehdipour, Ahmad, Mohammadi Roushandeh, Amaneh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research and Clinical Center for Infertility 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336669/
https://www.ncbi.nlm.nih.gov/pubmed/25709636
Descripción
Sumario:BACKGROUND: Melatonin, a reactive oxygen species (ROS) scavenger and an antioxidant, has been shown that can inhibit apoptosis. Administration of melatonin may improve embryo development in assisted reproductive technology (ART). OBJECTIVE: The aim of this study was to evaluate the role of melatonin in inhibition of spontaneous and induced apoptosis by Tumor Necrosis Factor Alph (TNF-α) and actinomycin-D during preimplantation development of mouse embryos. MATERIALS AND METHODS: Female BALB/c mice were superovulated with pregnant mare serum gonadotropin (PMSG) followed by human chorionic gonadotropin (HCG), then allowed to mate with male mice. The resultant 2-cell embryos were divided into six groups as follows: control (group I), melatonin (group II), actinomycin-D (group III), actinomycin-D + melatonin (group IV), TNF-α (group V), and TNF-α + melatonin (group VI). We recorded the numbers and developmental rates of the 4-cell, 8-cell, morula and blastocyst embryos. Blastocysts were stained with acridine orange in order to assess for the embryo quality. RESULTS: The group IV showed a significantly higher developmental rate of blastocysts compared to group III (p<0.05). The number of dead blastomers was significantly decreased in group IV in comparison to group III (p<0.05). Both V and VI groups had a lower developmental rate and lesser quality of blastocysts compared with group I. There was no significant difference in the developmental rate of blastocysts from group II compared to group I (p<0.05). CONCLUSION: Supplementation of embryo culture media with melatonin can improve the quality and developmental rate of embryos. Melatonin can prevent cell death that was induced by TNF- α and actinomycine-D.