Cargando…
Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images
BACKGROUND: Flowering (spikelet anthesis) is one of the most important phenotypic characteristics of paddy rice, and researchers expend efforts to observe flowering timing. Observing flowering is very time-consuming and labor-intensive, because it is still visually performed by humans. An image-base...
Autores principales: | Guo, Wei, Fukatsu, Tokihiro, Ninomiya, Seishi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336727/ https://www.ncbi.nlm.nih.gov/pubmed/25705245 http://dx.doi.org/10.1186/s13007-015-0047-9 |
Ejemplares similares
-
Automatic estimation of heading date of paddy rice using deep learning
por: Desai, Sai Vikas, et al.
Publicado: (2019) -
EasyPCC: Benchmark Datasets and Tools for High-Throughput Measurement of the Plant Canopy Coverage Ratio under Field Conditions
por: Guo, Wei, et al.
Publicado: (2017) -
Automatic rape flower cluster counting method based on low-cost labelling and UAV-RGB images
por: Li, Jie, et al.
Publicado: (2023) -
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
por: Jiang, Yu, et al.
Publicado: (2020) -
Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images
por: Fernandez-Gallego, Jose A., et al.
Publicado: (2018)