Cargando…
Histopathological, Histomorphometrical, and Radiographical Evaluation of Injectable Glass-Ceramic-Chitosan Nanocomposite in Bone Reconstruction of Rat
Background. Bone defects following tumor resection and osteolysis due to bone lesions, periodontal tissue disorders, and bone reconstruction are challenges that surgeons face. Gass-ceramic-chitosan nanocomposite contains chitosan, a derivative of crustaceans' exoskeleton. Methods. Thirty-two 6–...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337039/ https://www.ncbi.nlm.nih.gov/pubmed/25737725 http://dx.doi.org/10.1155/2015/719574 |
Sumario: | Background. Bone defects following tumor resection and osteolysis due to bone lesions, periodontal tissue disorders, and bone reconstruction are challenges that surgeons face. Gass-ceramic-chitosan nanocomposite contains chitosan, a derivative of crustaceans' exoskeleton. Methods. Thirty-two 6–8-week-old male Wistar rats were chosen. One hole on each right and left tibia was made. The right tibia holes were filled with injectable glass-ceramic-chitosan nanocomposite, and the left tibia holes were left empty. After 7, 14, 28, and 60 days, histopathological, histomorphometrical, and radiographical assessments were performed. Results. Radiographic density on days 7 and 14 was significantly higher in the right tibias than in the left tibias. Trabecular bone thickness, which was higher in the right tibias, increased from day 7 to day 60 in both right and left tibias, although not significantly. Conclusions. Glass-ceramic-chitosan nanocomposite is suggested for use in bone repair in cases of bone loss. More histopathological, histomorphometrical, and radiographical assessments are also recommended. |
---|