Cargando…

MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ

In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive fee...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jyun-Yuan, Chou, Shu-Fan, Lee, Jun-Wei, Chen, Hung-Lin, Chen, Chun-Ming, Tao, Mi-Hua, Shih, Chiaho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338335/
https://www.ncbi.nlm.nih.gov/pubmed/25595716
http://dx.doi.org/10.1261/rna.048744.114
Descripción
Sumario:In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive feed-forward loop between HBV, miR-130a, PPARγ, and PGC1α. Accordingly, HBV can significantly enhance viral replication by reducing miR-130a and increasing PGC1α and PPARγ. NF-κB/p65 can strongly stimulate miR-130a promoter, while miR-130a can promote NF-κB/p65 protein level by reducing PPARγ and thus NF-κB/p65 protein degradation. We postulated another positive feed-forward loop between miR-130a and NF-κB/p65 via PPARγ. During liver inflammation, NF-κB signaling could contribute to viral clearance via its positive effect on miR-130a transcription. Conversely, in asymptomatic HBV carriers, persistent viral infection could reduce miR-130a and NF-κB expression, leading to dampened inflammation and immune tolerance. Finally, miR-130a could contribute to metabolic homeostasis by dual targeting PGC1α and PPARγ simultaneously.