Cargando…

Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus

BACKGROUND: Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Stukas, Sophie, Robert, Jerome, Lee, Michael, Kulic, Iva, Carr, Michael, Tourigny, Katherine, Fan, Jianjia, Namjoshi, Dhananjay, Lemke, Kalistyne, DeValle, Nicole, Chan, Jeniffer, Wilson, Tammy, Wilkinson, Anna, Chapanian, Rafi, Kizhakkedathu, Jayachandran N., Cirrito, John R., Oda, Michael N., Wellington, Cheryl L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338702/
https://www.ncbi.nlm.nih.gov/pubmed/25392541
http://dx.doi.org/10.1161/JAHA.114.001156
_version_ 1782481257425272832
author Stukas, Sophie
Robert, Jerome
Lee, Michael
Kulic, Iva
Carr, Michael
Tourigny, Katherine
Fan, Jianjia
Namjoshi, Dhananjay
Lemke, Kalistyne
DeValle, Nicole
Chan, Jeniffer
Wilson, Tammy
Wilkinson, Anna
Chapanian, Rafi
Kizhakkedathu, Jayachandran N.
Cirrito, John R.
Oda, Michael N.
Wellington, Cheryl L.
author_facet Stukas, Sophie
Robert, Jerome
Lee, Michael
Kulic, Iva
Carr, Michael
Tourigny, Katherine
Fan, Jianjia
Namjoshi, Dhananjay
Lemke, Kalistyne
DeValle, Nicole
Chan, Jeniffer
Wilson, Tammy
Wilkinson, Anna
Chapanian, Rafi
Kizhakkedathu, Jayachandran N.
Cirrito, John R.
Oda, Michael N.
Wellington, Cheryl L.
author_sort Stukas, Sophie
collection PubMed
description BACKGROUND: Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. METHODS AND RESULTS: Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. CONCLUSIONS: Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent.
format Online
Article
Text
id pubmed-4338702
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-43387022015-02-27 Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus Stukas, Sophie Robert, Jerome Lee, Michael Kulic, Iva Carr, Michael Tourigny, Katherine Fan, Jianjia Namjoshi, Dhananjay Lemke, Kalistyne DeValle, Nicole Chan, Jeniffer Wilson, Tammy Wilkinson, Anna Chapanian, Rafi Kizhakkedathu, Jayachandran N. Cirrito, John R. Oda, Michael N. Wellington, Cheryl L. J Am Heart Assoc Original Research BACKGROUND: Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. METHODS AND RESULTS: Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. CONCLUSIONS: Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent. Blackwell Publishing Ltd 2014-11-12 /pmc/articles/PMC4338702/ /pubmed/25392541 http://dx.doi.org/10.1161/JAHA.114.001156 Text en © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Stukas, Sophie
Robert, Jerome
Lee, Michael
Kulic, Iva
Carr, Michael
Tourigny, Katherine
Fan, Jianjia
Namjoshi, Dhananjay
Lemke, Kalistyne
DeValle, Nicole
Chan, Jeniffer
Wilson, Tammy
Wilkinson, Anna
Chapanian, Rafi
Kizhakkedathu, Jayachandran N.
Cirrito, John R.
Oda, Michael N.
Wellington, Cheryl L.
Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title_full Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title_fullStr Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title_full_unstemmed Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title_short Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus
title_sort intravenously injected human apolipoprotein a‐i rapidly enters the central nervous system via the choroid plexus
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338702/
https://www.ncbi.nlm.nih.gov/pubmed/25392541
http://dx.doi.org/10.1161/JAHA.114.001156
work_keys_str_mv AT stukassophie intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT robertjerome intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT leemichael intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT kuliciva intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT carrmichael intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT tourignykatherine intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT fanjianjia intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT namjoshidhananjay intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT lemkekalistyne intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT devallenicole intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT chanjeniffer intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT wilsontammy intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT wilkinsonanna intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT chapanianrafi intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT kizhakkedathujayachandrann intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT cirritojohnr intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT odamichaeln intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus
AT wellingtoncheryll intravenouslyinjectedhumanapolipoproteinairapidlyentersthecentralnervoussystemviathechoroidplexus