Cargando…

Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function

BACKGROUND: Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never be...

Descripción completa

Detalles Bibliográficos
Autores principales: Mooij, H. L., Cabrales, P., Bernelot Moens, S. J., Xu, D., Udayappan, S. D., Tsai, A. G., van der Sande, M. A. J., de Groot, E., Intaglietta, M., Kastelein, J. J. P., Dallinga‐Thie, G. M., Esko, J. D., Stroes, E. S., Nieuwdorp, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338717/
https://www.ncbi.nlm.nih.gov/pubmed/25468659
http://dx.doi.org/10.1161/JAHA.114.001274
_version_ 1782481260853067776
author Mooij, H. L.
Cabrales, P.
Bernelot Moens, S. J.
Xu, D.
Udayappan, S. D.
Tsai, A. G.
van der Sande, M. A. J.
de Groot, E.
Intaglietta, M.
Kastelein, J. J. P.
Dallinga‐Thie, G. M.
Esko, J. D.
Stroes, E. S.
Nieuwdorp, M.
author_facet Mooij, H. L.
Cabrales, P.
Bernelot Moens, S. J.
Xu, D.
Udayappan, S. D.
Tsai, A. G.
van der Sande, M. A. J.
de Groot, E.
Intaglietta, M.
Kastelein, J. J. P.
Dallinga‐Thie, G. M.
Esko, J. D.
Stroes, E. S.
Nieuwdorp, M.
author_sort Mooij, H. L.
collection PubMed
description BACKGROUND: Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation genes EXT1 and EXT2 on endothelial function in vitro as well as in vivo. METHODS AND RESULT: Flow‐mediated dilation, a marker of nitric oxide bioavailability, was studied in Ext1(+/−) and Ext2(+/−) mice versus controls (n=7 per group), as well as in human subjects with heterozygous loss of function mutations in EXT1 and EXT2 (n=13 hereditary multiple exostoses and n=13 controls). Endothelial function was measured in microvascular endothelial cells under laminar flow with or without siRNA targeting EXT1 or EXT2. Endothelial glycocalyx and maximal arteriolar dilatation were significantly altered in Ext1(+/−) and Ext2(+/−) mice compared to wild‐type littermates (glycocalyx: wild‐type 0.67±0.1 μm, Ext1(+/−) 0.28±0.1 μm and Ext2(+/−) 0.25±0.1 μm, P<0.01, maximal arteriolar dilation during reperfusion: wild‐type 11.3±1.0%), Ext1(+/−) 15.2±1.4% and Ext2(+/−) 13.8±1.6% P<0.05). In humans, brachial artery flow‐mediated dilation was significantly increased in hereditary multiple exostoses patients (hereditary multiple exostoses 8.1±0.8% versus control 5.6±0.7%, P<0.05). In line, silencing of microvascular endothelial cell EXT1 and EXT2 under flow led to significant upregulation of endothelial nitric oxide synthesis and phospho‐endothelial nitric oxide synthesis protein expression. CONCLUSIONS: Our data implicate that heparan sulfate elongation genes EXT1 and EXT2 are involved in maintaining endothelial homeostasis, presumably via increased nitric oxide bioavailability.
format Online
Article
Text
id pubmed-4338717
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-43387172015-02-27 Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function Mooij, H. L. Cabrales, P. Bernelot Moens, S. J. Xu, D. Udayappan, S. D. Tsai, A. G. van der Sande, M. A. J. de Groot, E. Intaglietta, M. Kastelein, J. J. P. Dallinga‐Thie, G. M. Esko, J. D. Stroes, E. S. Nieuwdorp, M. J Am Heart Assoc Original Research BACKGROUND: Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation genes EXT1 and EXT2 on endothelial function in vitro as well as in vivo. METHODS AND RESULT: Flow‐mediated dilation, a marker of nitric oxide bioavailability, was studied in Ext1(+/−) and Ext2(+/−) mice versus controls (n=7 per group), as well as in human subjects with heterozygous loss of function mutations in EXT1 and EXT2 (n=13 hereditary multiple exostoses and n=13 controls). Endothelial function was measured in microvascular endothelial cells under laminar flow with or without siRNA targeting EXT1 or EXT2. Endothelial glycocalyx and maximal arteriolar dilatation were significantly altered in Ext1(+/−) and Ext2(+/−) mice compared to wild‐type littermates (glycocalyx: wild‐type 0.67±0.1 μm, Ext1(+/−) 0.28±0.1 μm and Ext2(+/−) 0.25±0.1 μm, P<0.01, maximal arteriolar dilation during reperfusion: wild‐type 11.3±1.0%), Ext1(+/−) 15.2±1.4% and Ext2(+/−) 13.8±1.6% P<0.05). In humans, brachial artery flow‐mediated dilation was significantly increased in hereditary multiple exostoses patients (hereditary multiple exostoses 8.1±0.8% versus control 5.6±0.7%, P<0.05). In line, silencing of microvascular endothelial cell EXT1 and EXT2 under flow led to significant upregulation of endothelial nitric oxide synthesis and phospho‐endothelial nitric oxide synthesis protein expression. CONCLUSIONS: Our data implicate that heparan sulfate elongation genes EXT1 and EXT2 are involved in maintaining endothelial homeostasis, presumably via increased nitric oxide bioavailability. Blackwell Publishing Ltd 2014-12-02 /pmc/articles/PMC4338717/ /pubmed/25468659 http://dx.doi.org/10.1161/JAHA.114.001274 Text en © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Mooij, H. L.
Cabrales, P.
Bernelot Moens, S. J.
Xu, D.
Udayappan, S. D.
Tsai, A. G.
van der Sande, M. A. J.
de Groot, E.
Intaglietta, M.
Kastelein, J. J. P.
Dallinga‐Thie, G. M.
Esko, J. D.
Stroes, E. S.
Nieuwdorp, M.
Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title_full Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title_fullStr Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title_full_unstemmed Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title_short Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
title_sort loss of function in heparan sulfate elongation genes ext1 and ext 2 results in improved nitric oxide bioavailability and endothelial function
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338717/
https://www.ncbi.nlm.nih.gov/pubmed/25468659
http://dx.doi.org/10.1161/JAHA.114.001274
work_keys_str_mv AT mooijhl lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT cabralesp lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT bernelotmoenssj lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT xud lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT udayappansd lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT tsaiag lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT vandersandemaj lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT degroote lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT intagliettam lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT kasteleinjjp lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT dallingathiegm lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT eskojd lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT stroeses lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction
AT nieuwdorpm lossoffunctioninheparansulfateelongationgenesext1andext2resultsinimprovednitricoxidebioavailabilityandendothelialfunction