Cargando…

Dietary Salt Restriction Improves Cardiac and Adipose Tissue Pathology Independently of Obesity in a Rat Model of Metabolic Syndrome

BACKGROUND: Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. METHODS AND RESULTS: We investigated whether d...

Descripción completa

Detalles Bibliográficos
Autores principales: Hattori, Takuya, Murase, Tamayo, Takatsu, Miwa, Nagasawa, Kai, Matsuura, Natsumi, Watanabe, Shogo, Murohara, Toyoaki, Nagata, Kohzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338725/
https://www.ncbi.nlm.nih.gov/pubmed/25468654
http://dx.doi.org/10.1161/JAHA.114.001312
Descripción
Sumario:BACKGROUND: Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. METHODS AND RESULTS: We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z‐Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal‐salt (0.36% NaCl in chow) or low‐salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z‐Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal‐salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin–angiotensin–aldosterone system genes were increased in DS/obese rats fed the normal‐salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. CONCLUSIONS: Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome.