Cargando…
Comprehensive, structurally-informed alignment and phylogeny of vertebrate biogenic amine receptors
Biogenic amine receptors play critical roles in regulating behavior and physiology in both vertebrates and invertebrates, particularly within the central nervous system. Members of the G-protein coupled receptor (GPCR) family, these receptors interact with endogenous bioamine ligands such as dopamin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338800/ https://www.ncbi.nlm.nih.gov/pubmed/25737813 http://dx.doi.org/10.7717/peerj.773 |
Sumario: | Biogenic amine receptors play critical roles in regulating behavior and physiology in both vertebrates and invertebrates, particularly within the central nervous system. Members of the G-protein coupled receptor (GPCR) family, these receptors interact with endogenous bioamine ligands such as dopamine, serotonin, and epinephrine, and are targeted by a wide array of pharmaceuticals. Despite the clear clinical and biological importance of these receptors, their evolutionary history remains poorly characterized. In particular, the relationships among biogenic amine receptors and any specific evolutionary constraints acting within distinct receptor subtypes are largely unknown. To advance and facilitate studies in this receptor family, we have constructed a comprehensive, high-quality sequence alignment of vertebrate biogenic amine receptors. In particular, we have integrated a traditional multiple sequence approach with robust structural domain predictions to ensure that alignment columns accurately capture the highly-conserved GPCR structural domains, and we demonstrate how ignoring structural information produces spurious inferences of homology. Using this alignment, we have constructed a structurally-partitioned maximum-likelihood phylogeny from which we deduce novel biogenic amine receptor relationships and uncover previously unrecognized lineage-specific receptor clades. Moreover, we find that roughly 1% of the 3039 sequences in our final alignment are either misannotated or unclassified, and we propose updated classifications for these receptors. We release our comprehensive alignment and its corresponding phylogeny as a resource for future research into the evolution and diversification of biogenic amine receptors. |
---|