Cargando…

Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo

Regulation of AMPA receptor (AMPAR) membrane trafficking plays a critical role in synaptic plasticity and learning and memory. However, how AMPAR trafficking occurs in vivo remains elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stim...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yong, Cudmore, Robert H., Lin, Da-Ting, Linden, David J., Huganir, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339371/
https://www.ncbi.nlm.nih.gov/pubmed/25643295
http://dx.doi.org/10.1038/nn.3936
Descripción
Sumario:Regulation of AMPA receptor (AMPAR) membrane trafficking plays a critical role in synaptic plasticity and learning and memory. However, how AMPAR trafficking occurs in vivo remains elusive. Using in vivo two-photon microscopy in the mouse somatosensory barrel cortex, we found that acute whisker stimulation leads to a significant increase in the surface expression of the AMPAR GluA1 subunit (sGluA1) in both spines and dendritic shafts and small increases in spine size. Interestingly, initial spine properties bias spine changes following whisker stimulation. Changes in spine sGluA1 are positively correlated with changes in spine size and dendritic shaft sGluA1 following whisker stimulation. The increase in spine sGluA1 evoked by whisker stimulation is NMDA receptor dependent and long lasting, similar to major forms of synaptic plasticity in the brain. These results reveal experience dependent AMPAR trafficking in real time and characterize, in vivo, a major form of synaptic plasticity in the brain.