Cargando…
Genetic diversity of medically important and emerging Candida species causing invasive infection
BACKGROUND: Genetic variation in the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has been studied among fungi. However, the numbers of ITS sequence polymorphisms in the various Candida species and their associations with sources of invasive fungal infections remain poorly investiga...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339437/ https://www.ncbi.nlm.nih.gov/pubmed/25887032 http://dx.doi.org/10.1186/s12879-015-0793-3 |
_version_ | 1782358875716976640 |
---|---|
author | Merseguel, Karina Bellinghausen Nishikaku, Angela Satie Rodrigues, Anderson Messias Padovan, Ana Carolina e Ferreira, Renata Carmona Salles de Azevedo Melo, Analy da Silva Briones, Marcelo Ribeiro Colombo, Arnaldo Lopes |
author_facet | Merseguel, Karina Bellinghausen Nishikaku, Angela Satie Rodrigues, Anderson Messias Padovan, Ana Carolina e Ferreira, Renata Carmona Salles de Azevedo Melo, Analy da Silva Briones, Marcelo Ribeiro Colombo, Arnaldo Lopes |
author_sort | Merseguel, Karina Bellinghausen |
collection | PubMed |
description | BACKGROUND: Genetic variation in the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has been studied among fungi. However, the numbers of ITS sequence polymorphisms in the various Candida species and their associations with sources of invasive fungal infections remain poorly investigated. Here, we characterized the intraspecific and interspecific ITS diversity of Candida spp. strains collected from patients with bloodstream or oroesophageal candidiasis. METHODS: We selected cultures of representative medically important species of Candida as well as some rare and emerging pathogens. Identification was performed by micromorphology and by biochemical testing using an ID32C(®) system, as well as by the sequencing of rDNA ITS. The presence of intraspecific ITS polymorphisms was characterized based on haplotype networks, and interspecific diversity was characterized based on Bayesian phylogenetic analysis. RESULTS: Among 300 Candida strains, we identified 76 C. albicans, 14 C. dubliniensis, 40 C. tropicalis, 47 C. glabrata, 34 C. parapsilosis (sensu stricto), 31 C. orthopsilosis, 3 C. metapsilosis, 21 Meyerozyma guilliermondii (C. guilliermondii), 12 Pichia kudriavzevii (C. krusei), 6 Clavispora lusitaniae (C. lusitaniae), 3 C. intermedia, 6 Wickerhamomyces anomalus (C. pelliculosa), and 2 C. haemulonii strains, and 1 C. duobushaemulonii, 1 Kluyveromyces marxianus (C. kefyr), 1 Meyerozyma caribbica (C. fermentati), 1 Pichia norvegensis (C. norvegensis), and 1 Lodderomyces elongisporus strain. Out of a total of seven isolates with inconsistent ID32C(®) profiles, ITS sequencing identified one C. lusitaniae strain, three C. intermedia strains, two C. haemulonii strains and one C. duobushaemulonii strain. Analysis of ITS variability revealed a greater number of haplotypes among C. albicans, C. tropicalis, C. glabrata and C. lusitaniae, which are predominantly related to endogenous sources of acquisition. Bayesian analysis confirmed the major phylogenetic relationships among the isolates and the molecular identification of the different Candida spp. CONCLUSIONS: Molecular studies based on ITS sequencing are necessary to identify closely related and emerging species. Polymorphism analysis of the ITS rDNA region demonstrated its utility as a genetic marker for species identification and phylogenetic relationships as well as for drawing inferences concerning the natural history of hematogenous infections caused by medically important and emerging Candida species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-015-0793-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4339437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43394372015-02-26 Genetic diversity of medically important and emerging Candida species causing invasive infection Merseguel, Karina Bellinghausen Nishikaku, Angela Satie Rodrigues, Anderson Messias Padovan, Ana Carolina e Ferreira, Renata Carmona Salles de Azevedo Melo, Analy da Silva Briones, Marcelo Ribeiro Colombo, Arnaldo Lopes BMC Infect Dis Research Article BACKGROUND: Genetic variation in the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has been studied among fungi. However, the numbers of ITS sequence polymorphisms in the various Candida species and their associations with sources of invasive fungal infections remain poorly investigated. Here, we characterized the intraspecific and interspecific ITS diversity of Candida spp. strains collected from patients with bloodstream or oroesophageal candidiasis. METHODS: We selected cultures of representative medically important species of Candida as well as some rare and emerging pathogens. Identification was performed by micromorphology and by biochemical testing using an ID32C(®) system, as well as by the sequencing of rDNA ITS. The presence of intraspecific ITS polymorphisms was characterized based on haplotype networks, and interspecific diversity was characterized based on Bayesian phylogenetic analysis. RESULTS: Among 300 Candida strains, we identified 76 C. albicans, 14 C. dubliniensis, 40 C. tropicalis, 47 C. glabrata, 34 C. parapsilosis (sensu stricto), 31 C. orthopsilosis, 3 C. metapsilosis, 21 Meyerozyma guilliermondii (C. guilliermondii), 12 Pichia kudriavzevii (C. krusei), 6 Clavispora lusitaniae (C. lusitaniae), 3 C. intermedia, 6 Wickerhamomyces anomalus (C. pelliculosa), and 2 C. haemulonii strains, and 1 C. duobushaemulonii, 1 Kluyveromyces marxianus (C. kefyr), 1 Meyerozyma caribbica (C. fermentati), 1 Pichia norvegensis (C. norvegensis), and 1 Lodderomyces elongisporus strain. Out of a total of seven isolates with inconsistent ID32C(®) profiles, ITS sequencing identified one C. lusitaniae strain, three C. intermedia strains, two C. haemulonii strains and one C. duobushaemulonii strain. Analysis of ITS variability revealed a greater number of haplotypes among C. albicans, C. tropicalis, C. glabrata and C. lusitaniae, which are predominantly related to endogenous sources of acquisition. Bayesian analysis confirmed the major phylogenetic relationships among the isolates and the molecular identification of the different Candida spp. CONCLUSIONS: Molecular studies based on ITS sequencing are necessary to identify closely related and emerging species. Polymorphism analysis of the ITS rDNA region demonstrated its utility as a genetic marker for species identification and phylogenetic relationships as well as for drawing inferences concerning the natural history of hematogenous infections caused by medically important and emerging Candida species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-015-0793-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-02-13 /pmc/articles/PMC4339437/ /pubmed/25887032 http://dx.doi.org/10.1186/s12879-015-0793-3 Text en © Merseguel et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Merseguel, Karina Bellinghausen Nishikaku, Angela Satie Rodrigues, Anderson Messias Padovan, Ana Carolina e Ferreira, Renata Carmona Salles de Azevedo Melo, Analy da Silva Briones, Marcelo Ribeiro Colombo, Arnaldo Lopes Genetic diversity of medically important and emerging Candida species causing invasive infection |
title | Genetic diversity of medically important and emerging Candida species causing invasive infection |
title_full | Genetic diversity of medically important and emerging Candida species causing invasive infection |
title_fullStr | Genetic diversity of medically important and emerging Candida species causing invasive infection |
title_full_unstemmed | Genetic diversity of medically important and emerging Candida species causing invasive infection |
title_short | Genetic diversity of medically important and emerging Candida species causing invasive infection |
title_sort | genetic diversity of medically important and emerging candida species causing invasive infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339437/ https://www.ncbi.nlm.nih.gov/pubmed/25887032 http://dx.doi.org/10.1186/s12879-015-0793-3 |
work_keys_str_mv | AT merseguelkarinabellinghausen geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT nishikakuangelasatie geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT rodriguesandersonmessias geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT padovananacarolina geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT eferreirarenatacarmona geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT sallesdeazevedomeloanaly geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT dasilvabrionesmarceloribeiro geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection AT colomboarnaldolopes geneticdiversityofmedicallyimportantandemergingcandidaspeciescausinginvasiveinfection |