Cargando…

The Enhanced Ability of Peripheral Mononuclear Cells Differentiating into Neural Cells in Term Infants with Good Improvement Suffering from Severe Hypoxic Ischemic Encephalopathy

Objective: It has been found that asphyxia influences proliferation and differentiation of brain neural stem cells in newborn animal models, and that peripheral blood stem cells play an important role in repairing brain damage. But it has not been reported yet whether asphyxia influences peripheral...

Descripción completa

Detalles Bibliográficos
Autores principales: dong, Wei, Yuwen, Zhang, Xiaohui, Gong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339569/
https://www.ncbi.nlm.nih.gov/pubmed/25755867
Descripción
Sumario:Objective: It has been found that asphyxia influences proliferation and differentiation of brain neural stem cells in newborn animal models, and that peripheral blood stem cells play an important role in repairing brain damage. But it has not been reported yet whether asphyxia influences peripheral blood stem cells differentiating into neural cells, and whether with the progress of the disease there is a change of peripheral blood stem cells differentiating into neural cells in newborns with hypoxic ischemic encephalopathy (HIE). Methods: Fifty term HIE infants were enrolled in research from March, 2007 to March, 2010. There were 10 cases of the severe HIE patients with good improvement, the severe HIE patients with poor improvement, the moderate HIE patients, the mild HIE patients and the controls, respectively. The peripheral mononuclear cells collected within 24 hours and on 7th day after birth were cultured in vitro for 10 days to differentiate into neural cells. The induced nestin positive cells were identified with Immunohistochemistry and counted. Findings : Within 24 hours after birth, there were no difference of induced nestin positive cells among the severe HIE patients with good improvement (68.99±7.85), the severe HIE patients with poor improvement (71.43±6.88), the moderate HIE patients (73.34±6.46), the mild HIE patients (70.46±6.66) and the controls (71.13±7.19, F=0.51, P=0.7). In the severe HIE patients with obvious improvement, the induced nestin positive cells from 7th day peripheral blood mononuclear cells (94.50±15.57) increased markedly compared with that within 24 hours (68.99±7.85, t=4.66, P<0.001), and were higher than the induced nestin positive cells from 7(th) day peripheral blood mononuclear cells in the severe HIE patients with no obvious improvement (94.50±15.57 vs 69.48±5.32, t=4.62, P<0.001). Conclusion: The ability of peripheral mononuclear cells differentiating into neural cells in term infants with good improvement suffering from severe HIE was enhanced, which may suggest possible relationship between the brain repair and the peripheral stem cells.