Cargando…
Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339658/ https://www.ncbi.nlm.nih.gov/pubmed/25156663 http://dx.doi.org/10.1177/0883073814545884 |
_version_ | 1782358897668915200 |
---|---|
author | Segal, Michael M. Abdellateef, Mostafa El-Hattab, Ayman W. Hilbush, Brian S. De La Vega, Francisco M. Tromp, Gerard Williams, Marc S. Betensky, Rebecca A. Gleeson, Joseph |
author_facet | Segal, Michael M. Abdellateef, Mostafa El-Hattab, Ayman W. Hilbush, Brian S. De La Vega, Francisco M. Tromp, Gerard Williams, Marc S. Betensky, Rebecca A. Gleeson, Joseph |
author_sort | Segal, Michael M. |
collection | PubMed |
description | We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 genomic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of many components of genomic analysis. |
format | Online Article Text |
id | pubmed-4339658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-43396582015-05-31 Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis Segal, Michael M. Abdellateef, Mostafa El-Hattab, Ayman W. Hilbush, Brian S. De La Vega, Francisco M. Tromp, Gerard Williams, Marc S. Betensky, Rebecca A. Gleeson, Joseph J Child Neurol Original Articles We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 genomic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of many components of genomic analysis. SAGE Publications 2015-06 /pmc/articles/PMC4339658/ /pubmed/25156663 http://dx.doi.org/10.1177/0883073814545884 Text en © The Author(s) 2014 http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(http://www.uk.sagepub.com/aboutus/openaccess.htm). |
spellingShingle | Original Articles Segal, Michael M. Abdellateef, Mostafa El-Hattab, Ayman W. Hilbush, Brian S. De La Vega, Francisco M. Tromp, Gerard Williams, Marc S. Betensky, Rebecca A. Gleeson, Joseph Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title_full | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title_fullStr | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title_full_unstemmed | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title_short | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis |
title_sort | clinical pertinence metric enables hypothesis-independent genome-phenome analysis for neurologic diagnosis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339658/ https://www.ncbi.nlm.nih.gov/pubmed/25156663 http://dx.doi.org/10.1177/0883073814545884 |
work_keys_str_mv | AT segalmichaelm clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT abdellateefmostafa clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT elhattabaymanw clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT hilbushbrians clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT delavegafranciscom clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT trompgerard clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT williamsmarcs clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT betenskyrebeccaa clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis AT gleesonjoseph clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis |