Cargando…

Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis

We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” m...

Descripción completa

Detalles Bibliográficos
Autores principales: Segal, Michael M., Abdellateef, Mostafa, El-Hattab, Ayman W., Hilbush, Brian S., De La Vega, Francisco M., Tromp, Gerard, Williams, Marc S., Betensky, Rebecca A., Gleeson, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339658/
https://www.ncbi.nlm.nih.gov/pubmed/25156663
http://dx.doi.org/10.1177/0883073814545884
_version_ 1782358897668915200
author Segal, Michael M.
Abdellateef, Mostafa
El-Hattab, Ayman W.
Hilbush, Brian S.
De La Vega, Francisco M.
Tromp, Gerard
Williams, Marc S.
Betensky, Rebecca A.
Gleeson, Joseph
author_facet Segal, Michael M.
Abdellateef, Mostafa
El-Hattab, Ayman W.
Hilbush, Brian S.
De La Vega, Francisco M.
Tromp, Gerard
Williams, Marc S.
Betensky, Rebecca A.
Gleeson, Joseph
author_sort Segal, Michael M.
collection PubMed
description We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 genomic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of many components of genomic analysis.
format Online
Article
Text
id pubmed-4339658
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-43396582015-05-31 Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis Segal, Michael M. Abdellateef, Mostafa El-Hattab, Ayman W. Hilbush, Brian S. De La Vega, Francisco M. Tromp, Gerard Williams, Marc S. Betensky, Rebecca A. Gleeson, Joseph J Child Neurol Original Articles We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 genomic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of many components of genomic analysis. SAGE Publications 2015-06 /pmc/articles/PMC4339658/ /pubmed/25156663 http://dx.doi.org/10.1177/0883073814545884 Text en © The Author(s) 2014 http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(http://www.uk.sagepub.com/aboutus/openaccess.htm).
spellingShingle Original Articles
Segal, Michael M.
Abdellateef, Mostafa
El-Hattab, Ayman W.
Hilbush, Brian S.
De La Vega, Francisco M.
Tromp, Gerard
Williams, Marc S.
Betensky, Rebecca A.
Gleeson, Joseph
Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title_full Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title_fullStr Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title_full_unstemmed Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title_short Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis
title_sort clinical pertinence metric enables hypothesis-independent genome-phenome analysis for neurologic diagnosis
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339658/
https://www.ncbi.nlm.nih.gov/pubmed/25156663
http://dx.doi.org/10.1177/0883073814545884
work_keys_str_mv AT segalmichaelm clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT abdellateefmostafa clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT elhattabaymanw clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT hilbushbrians clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT delavegafranciscom clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT trompgerard clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT williamsmarcs clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT betenskyrebeccaa clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis
AT gleesonjoseph clinicalpertinencemetricenableshypothesisindependentgenomephenomeanalysisforneurologicdiagnosis