Cargando…

A novel mechanism of post-translational modulation of HMGA functions by the histone chaperone nucleophosmin

High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnoldo, Laura, Sgarra, Riccardo, Chiefari, Eusebio, Iiritano, Stefania, Arcidiacono, Biagio, Pegoraro, Silvia, Pellarin, Ilenia, Brunetti, Antonio, Manfioletti, Guidalberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339810/
https://www.ncbi.nlm.nih.gov/pubmed/25711412
http://dx.doi.org/10.1038/srep08552
Descripción
Sumario:High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide evidence for a novel modulatory mechanism for HMGA functions. We show that HMGAs are complexed in vivo with the histone chaperone nucleophosmin (NPM1), that this interaction requires the histone-binding domain of NPM1, and that NPM1 modulates both DNA-binding affinity and specificity of HMGAs. By focusing on two human genes whose expression is directly regulated by HMGA1, the Insulin receptor (INSR) and the Insulin-like growth factor-binding protein 1 (IGFBP1) genes, we demonstrated that occupancy of their promoters by HMGA1 was NPM1-dependent, reflecting a mechanism in which the activity of these cis-regulatory elements is directly modulated by NPM1 leading to changes in gene expression. HMGAs need short stretches of AT-rich nucleosome-free regions to bind to DNA. Therefore, many putative HMGA binding sites are present within the genome. Our findings indicate that NPM1, by exerting a chaperoning activity towards HMGAs, may act as a master regulator in the control of DNA occupancy by these proteins and hence in HMGA-mediated gene expression.