Cargando…
Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
Despite the established role of Culex quinquefasciatus as a vector of various neurotropic viruses, such as the Rift Valley and West Nile viruses, as well as lymphatic filariasis, little is known regarding the organism’s reproductive physiology. As in other oviparous animals, vitellogenin, the most i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339980/ https://www.ncbi.nlm.nih.gov/pubmed/25710877 http://dx.doi.org/10.1371/journal.pone.0118736 |
_version_ | 1782358954521657344 |
---|---|
author | Moura, Alexandre S. Cardoso, André F. Costa-da-Silva, André L. Winter, Carlos E. Bijovsky, A. Tania |
author_facet | Moura, Alexandre S. Cardoso, André F. Costa-da-Silva, André L. Winter, Carlos E. Bijovsky, A. Tania |
author_sort | Moura, Alexandre S. |
collection | PubMed |
description | Despite the established role of Culex quinquefasciatus as a vector of various neurotropic viruses, such as the Rift Valley and West Nile viruses, as well as lymphatic filariasis, little is known regarding the organism’s reproductive physiology. As in other oviparous animals, vitellogenin, the most important source of nutrients for the embryo development, is digested by intracellular proteases. Using mass spectrometry, we have identified two cathepsin B homologues partially purified by self-proteolysis of Cx. quinquefasciatus total egg extract. The transcriptional profile of these two cathepsin B homologues was determined by quantitative RT-PCR, and the enzymatic activity associated with the peptidase was determined in ovaries after female engorgement. According to the VectorBase (vectorbase.org) annotation, both cathepsin B homologues shared approximately 66% identity in their amino acid sequences. The two cathepsin B genes are expressed simultaneously in the fat body of the vitellogenic females, and enzymatic activity was detected within the ovaries, suggesting an extra-ovarian origin. Similar to the transcriptional profile of vitellogenin, cathepsin B transcripts were shown to accumulate post-blood meal and reached their highest expression at 36 h PBM. However, while vitellogenin expression decreased drastically at 48 h PBM, the expression of the cathepsins increased until 84 h PBM, at which time the females of our colony were ready for oviposition. The similarity between their transcriptional profiles strongly suggests a role for the cathepsin B homologues in vitellin degradation. |
format | Online Article Text |
id | pubmed-4339980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43399802015-03-04 Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus Moura, Alexandre S. Cardoso, André F. Costa-da-Silva, André L. Winter, Carlos E. Bijovsky, A. Tania PLoS One Research Article Despite the established role of Culex quinquefasciatus as a vector of various neurotropic viruses, such as the Rift Valley and West Nile viruses, as well as lymphatic filariasis, little is known regarding the organism’s reproductive physiology. As in other oviparous animals, vitellogenin, the most important source of nutrients for the embryo development, is digested by intracellular proteases. Using mass spectrometry, we have identified two cathepsin B homologues partially purified by self-proteolysis of Cx. quinquefasciatus total egg extract. The transcriptional profile of these two cathepsin B homologues was determined by quantitative RT-PCR, and the enzymatic activity associated with the peptidase was determined in ovaries after female engorgement. According to the VectorBase (vectorbase.org) annotation, both cathepsin B homologues shared approximately 66% identity in their amino acid sequences. The two cathepsin B genes are expressed simultaneously in the fat body of the vitellogenic females, and enzymatic activity was detected within the ovaries, suggesting an extra-ovarian origin. Similar to the transcriptional profile of vitellogenin, cathepsin B transcripts were shown to accumulate post-blood meal and reached their highest expression at 36 h PBM. However, while vitellogenin expression decreased drastically at 48 h PBM, the expression of the cathepsins increased until 84 h PBM, at which time the females of our colony were ready for oviposition. The similarity between their transcriptional profiles strongly suggests a role for the cathepsin B homologues in vitellin degradation. Public Library of Science 2015-02-24 /pmc/articles/PMC4339980/ /pubmed/25710877 http://dx.doi.org/10.1371/journal.pone.0118736 Text en © 2015 Moura et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Moura, Alexandre S. Cardoso, André F. Costa-da-Silva, André L. Winter, Carlos E. Bijovsky, A. Tania Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus |
title | Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
|
title_full | Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
|
title_fullStr | Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
|
title_full_unstemmed | Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
|
title_short | Two Cathepsins B Are Responsible for the Yolk Protein Hydrolysis in Culex quinquefasciatus
|
title_sort | two cathepsins b are responsible for the yolk protein hydrolysis in culex quinquefasciatus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339980/ https://www.ncbi.nlm.nih.gov/pubmed/25710877 http://dx.doi.org/10.1371/journal.pone.0118736 |
work_keys_str_mv | AT mouraalexandres twocathepsinsbareresponsiblefortheyolkproteinhydrolysisinculexquinquefasciatus AT cardosoandref twocathepsinsbareresponsiblefortheyolkproteinhydrolysisinculexquinquefasciatus AT costadasilvaandrel twocathepsinsbareresponsiblefortheyolkproteinhydrolysisinculexquinquefasciatus AT wintercarlose twocathepsinsbareresponsiblefortheyolkproteinhydrolysisinculexquinquefasciatus AT bijovskyatania twocathepsinsbareresponsiblefortheyolkproteinhydrolysisinculexquinquefasciatus |