Cargando…

Analysis of contingency tables based on generalised median polish with power transformations and non-additive models

Contingency tables are a very common basis for the investigation of effects of different treatments or influences on a disease or the health state of patients. Many journals put a strong emphasis on p-values to support the validity of results. Therefore, even small contingency tables are analysed by...

Descripción completa

Detalles Bibliográficos
Autores principales: Klawonn, Frank, Jayaram, Balasubramaniam, Crull, Katja, Kukita, Akiko, Pessler, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340119/
https://www.ncbi.nlm.nih.gov/pubmed/25825662
http://dx.doi.org/10.1186/2047-2501-1-11
_version_ 1782358972366323712
author Klawonn, Frank
Jayaram, Balasubramaniam
Crull, Katja
Kukita, Akiko
Pessler, Frank
author_facet Klawonn, Frank
Jayaram, Balasubramaniam
Crull, Katja
Kukita, Akiko
Pessler, Frank
author_sort Klawonn, Frank
collection PubMed
description Contingency tables are a very common basis for the investigation of effects of different treatments or influences on a disease or the health state of patients. Many journals put a strong emphasis on p-values to support the validity of results. Therefore, even small contingency tables are analysed by techniques like t-test or ANOVA. Both these concepts are based on normality assumptions for the underlying data. For larger data sets, this assumption is not so critical, since the underlying statistics are based on sums of (independent) random variables which can be assumed to follow approximately a normal distribution, at least for a larger number of summands. But for smaller data sets, the normality assumption can often not be justified. Robust methods like the Wilcoxon-Mann-Whitney-U test or the Kruskal-Wallis test do not lead to statistically significant p-values for small samples. Median polish is a robust alternative to analyse contingency tables providing much more insight than just a p-value. Median polish is a technique that provides more information than just a p-value. It explains the contingency table in terms of an overall effect, row and columns effects and residuals. The underlying model for median polish is an additive model which is sometimes too restrictive. In this paper, we propose two related approach to generalise median polish. A power transformation can be applied to the values in the table, so that better results for median polish can be achieved. We propose a graphical method how to find a suitable power transformation. If the original data should be preserved, one can apply other transformations – based on so-called additive generators – that have an inverse transformation. In this way, median polish can be applied to the original data, but based on a non-additive model. The non-linearity of such a model can also be visualised to better understand the joint effects of rows and columns in a contingency table.
format Online
Article
Text
id pubmed-4340119
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-43401192015-03-30 Analysis of contingency tables based on generalised median polish with power transformations and non-additive models Klawonn, Frank Jayaram, Balasubramaniam Crull, Katja Kukita, Akiko Pessler, Frank Health Inf Sci Syst Research Contingency tables are a very common basis for the investigation of effects of different treatments or influences on a disease or the health state of patients. Many journals put a strong emphasis on p-values to support the validity of results. Therefore, even small contingency tables are analysed by techniques like t-test or ANOVA. Both these concepts are based on normality assumptions for the underlying data. For larger data sets, this assumption is not so critical, since the underlying statistics are based on sums of (independent) random variables which can be assumed to follow approximately a normal distribution, at least for a larger number of summands. But for smaller data sets, the normality assumption can often not be justified. Robust methods like the Wilcoxon-Mann-Whitney-U test or the Kruskal-Wallis test do not lead to statistically significant p-values for small samples. Median polish is a robust alternative to analyse contingency tables providing much more insight than just a p-value. Median polish is a technique that provides more information than just a p-value. It explains the contingency table in terms of an overall effect, row and columns effects and residuals. The underlying model for median polish is an additive model which is sometimes too restrictive. In this paper, we propose two related approach to generalise median polish. A power transformation can be applied to the values in the table, so that better results for median polish can be achieved. We propose a graphical method how to find a suitable power transformation. If the original data should be preserved, one can apply other transformations – based on so-called additive generators – that have an inverse transformation. In this way, median polish can be applied to the original data, but based on a non-additive model. The non-linearity of such a model can also be visualised to better understand the joint effects of rows and columns in a contingency table. BioMed Central 2013-05-30 /pmc/articles/PMC4340119/ /pubmed/25825662 http://dx.doi.org/10.1186/2047-2501-1-11 Text en © Klawonn et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Klawonn, Frank
Jayaram, Balasubramaniam
Crull, Katja
Kukita, Akiko
Pessler, Frank
Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title_full Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title_fullStr Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title_full_unstemmed Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title_short Analysis of contingency tables based on generalised median polish with power transformations and non-additive models
title_sort analysis of contingency tables based on generalised median polish with power transformations and non-additive models
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340119/
https://www.ncbi.nlm.nih.gov/pubmed/25825662
http://dx.doi.org/10.1186/2047-2501-1-11
work_keys_str_mv AT klawonnfrank analysisofcontingencytablesbasedongeneralisedmedianpolishwithpowertransformationsandnonadditivemodels
AT jayarambalasubramaniam analysisofcontingencytablesbasedongeneralisedmedianpolishwithpowertransformationsandnonadditivemodels
AT crullkatja analysisofcontingencytablesbasedongeneralisedmedianpolishwithpowertransformationsandnonadditivemodels
AT kukitaakiko analysisofcontingencytablesbasedongeneralisedmedianpolishwithpowertransformationsandnonadditivemodels
AT pesslerfrank analysisofcontingencytablesbasedongeneralisedmedianpolishwithpowertransformationsandnonadditivemodels