Cargando…

Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria

Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacter...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckdahl, Todd T., Campbell, A. Malcolm, Heyer, Laurie J., Poet, Jeffrey L., Blauch, David N., Snyder, Nicole L., Atchley, Dustin T., Baker, Erich J., Brown, Micah, Brunner, Elizabeth C., Callen, Sean A., Campbell, Jesse S., Carr, Caleb J., Carr, David R., Chadinha, Spencer A., Chester, Grace I., Chester, Josh, Clarkson, Ben R., Cochran, Kelly E., Doherty, Shannon E., Doyle, Catherine, Dwyer, Sarah, Edlin, Linnea M., Evans, Rebecca A., Fluharty, Taylor, Frederick, Janna, Galeota-Sprung, Jonah, Gammon, Betsy L., Grieshaber, Brandon, Gronniger, Jessica, Gutteridge, Katelyn, Henningsen, Joel, Isom, Bradley, Itell, Hannah L., Keffeler, Erica C., Lantz, Andrew J., Lim, Jonathan N., McGuire, Erin P., Moore, Alexander K., Morton, Jerrad, Nakano, Meredith, Pearson, Sara A., Perkins, Virginia, Parrish, Phoebe, Pierson, Claire E., Polpityaarachchige, Sachith, Quaney, Michael J., Slattery, Abagael, Smith, Kathryn E., Spell, Jackson, Spencer, Morgan, Taye, Telavive, Trueblood, Kamay, Vrana, Caroline J., Whitesides, E. Tucker
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340930/
https://www.ncbi.nlm.nih.gov/pubmed/25714374
http://dx.doi.org/10.1371/journal.pone.0118322
_version_ 1782359081634234368
author Eckdahl, Todd T.
Campbell, A. Malcolm
Heyer, Laurie J.
Poet, Jeffrey L.
Blauch, David N.
Snyder, Nicole L.
Atchley, Dustin T.
Baker, Erich J.
Brown, Micah
Brunner, Elizabeth C.
Callen, Sean A.
Campbell, Jesse S.
Carr, Caleb J.
Carr, David R.
Chadinha, Spencer A.
Chester, Grace I.
Chester, Josh
Clarkson, Ben R.
Cochran, Kelly E.
Doherty, Shannon E.
Doyle, Catherine
Dwyer, Sarah
Edlin, Linnea M.
Evans, Rebecca A.
Fluharty, Taylor
Frederick, Janna
Galeota-Sprung, Jonah
Gammon, Betsy L.
Grieshaber, Brandon
Gronniger, Jessica
Gutteridge, Katelyn
Henningsen, Joel
Isom, Bradley
Itell, Hannah L.
Keffeler, Erica C.
Lantz, Andrew J.
Lim, Jonathan N.
McGuire, Erin P.
Moore, Alexander K.
Morton, Jerrad
Nakano, Meredith
Pearson, Sara A.
Perkins, Virginia
Parrish, Phoebe
Pierson, Claire E.
Polpityaarachchige, Sachith
Quaney, Michael J.
Slattery, Abagael
Smith, Kathryn E.
Spell, Jackson
Spencer, Morgan
Taye, Telavive
Trueblood, Kamay
Vrana, Caroline J.
Whitesides, E. Tucker
author_facet Eckdahl, Todd T.
Campbell, A. Malcolm
Heyer, Laurie J.
Poet, Jeffrey L.
Blauch, David N.
Snyder, Nicole L.
Atchley, Dustin T.
Baker, Erich J.
Brown, Micah
Brunner, Elizabeth C.
Callen, Sean A.
Campbell, Jesse S.
Carr, Caleb J.
Carr, David R.
Chadinha, Spencer A.
Chester, Grace I.
Chester, Josh
Clarkson, Ben R.
Cochran, Kelly E.
Doherty, Shannon E.
Doyle, Catherine
Dwyer, Sarah
Edlin, Linnea M.
Evans, Rebecca A.
Fluharty, Taylor
Frederick, Janna
Galeota-Sprung, Jonah
Gammon, Betsy L.
Grieshaber, Brandon
Gronniger, Jessica
Gutteridge, Katelyn
Henningsen, Joel
Isom, Bradley
Itell, Hannah L.
Keffeler, Erica C.
Lantz, Andrew J.
Lim, Jonathan N.
McGuire, Erin P.
Moore, Alexander K.
Morton, Jerrad
Nakano, Meredith
Pearson, Sara A.
Perkins, Virginia
Parrish, Phoebe
Pierson, Claire E.
Polpityaarachchige, Sachith
Quaney, Michael J.
Slattery, Abagael
Smith, Kathryn E.
Spell, Jackson
Spencer, Morgan
Taye, Telavive
Trueblood, Kamay
Vrana, Caroline J.
Whitesides, E. Tucker
author_sort Eckdahl, Todd T.
collection PubMed
description Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.
format Online
Article
Text
id pubmed-4340930
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43409302015-03-04 Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria Eckdahl, Todd T. Campbell, A. Malcolm Heyer, Laurie J. Poet, Jeffrey L. Blauch, David N. Snyder, Nicole L. Atchley, Dustin T. Baker, Erich J. Brown, Micah Brunner, Elizabeth C. Callen, Sean A. Campbell, Jesse S. Carr, Caleb J. Carr, David R. Chadinha, Spencer A. Chester, Grace I. Chester, Josh Clarkson, Ben R. Cochran, Kelly E. Doherty, Shannon E. Doyle, Catherine Dwyer, Sarah Edlin, Linnea M. Evans, Rebecca A. Fluharty, Taylor Frederick, Janna Galeota-Sprung, Jonah Gammon, Betsy L. Grieshaber, Brandon Gronniger, Jessica Gutteridge, Katelyn Henningsen, Joel Isom, Bradley Itell, Hannah L. Keffeler, Erica C. Lantz, Andrew J. Lim, Jonathan N. McGuire, Erin P. Moore, Alexander K. Morton, Jerrad Nakano, Meredith Pearson, Sara A. Perkins, Virginia Parrish, Phoebe Pierson, Claire E. Polpityaarachchige, Sachith Quaney, Michael J. Slattery, Abagael Smith, Kathryn E. Spell, Jackson Spencer, Morgan Taye, Telavive Trueblood, Kamay Vrana, Caroline J. Whitesides, E. Tucker PLoS One Research Article Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. Public Library of Science 2015-02-25 /pmc/articles/PMC4340930/ /pubmed/25714374 http://dx.doi.org/10.1371/journal.pone.0118322 Text en © 2015 Eckdahl et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Eckdahl, Todd T.
Campbell, A. Malcolm
Heyer, Laurie J.
Poet, Jeffrey L.
Blauch, David N.
Snyder, Nicole L.
Atchley, Dustin T.
Baker, Erich J.
Brown, Micah
Brunner, Elizabeth C.
Callen, Sean A.
Campbell, Jesse S.
Carr, Caleb J.
Carr, David R.
Chadinha, Spencer A.
Chester, Grace I.
Chester, Josh
Clarkson, Ben R.
Cochran, Kelly E.
Doherty, Shannon E.
Doyle, Catherine
Dwyer, Sarah
Edlin, Linnea M.
Evans, Rebecca A.
Fluharty, Taylor
Frederick, Janna
Galeota-Sprung, Jonah
Gammon, Betsy L.
Grieshaber, Brandon
Gronniger, Jessica
Gutteridge, Katelyn
Henningsen, Joel
Isom, Bradley
Itell, Hannah L.
Keffeler, Erica C.
Lantz, Andrew J.
Lim, Jonathan N.
McGuire, Erin P.
Moore, Alexander K.
Morton, Jerrad
Nakano, Meredith
Pearson, Sara A.
Perkins, Virginia
Parrish, Phoebe
Pierson, Claire E.
Polpityaarachchige, Sachith
Quaney, Michael J.
Slattery, Abagael
Smith, Kathryn E.
Spell, Jackson
Spencer, Morgan
Taye, Telavive
Trueblood, Kamay
Vrana, Caroline J.
Whitesides, E. Tucker
Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title_full Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title_fullStr Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title_full_unstemmed Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title_short Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
title_sort programmed evolution for optimization of orthogonal metabolic output in bacteria
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340930/
https://www.ncbi.nlm.nih.gov/pubmed/25714374
http://dx.doi.org/10.1371/journal.pone.0118322
work_keys_str_mv AT eckdahltoddt programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT campbellamalcolm programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT heyerlauriej programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT poetjeffreyl programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT blauchdavidn programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT snydernicolel programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT atchleydustint programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT bakererichj programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT brownmicah programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT brunnerelizabethc programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT callenseana programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT campbelljesses programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT carrcalebj programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT carrdavidr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT chadinhaspencera programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT chestergracei programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT chesterjosh programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT clarksonbenr programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT cochrankellye programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT dohertyshannone programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT doylecatherine programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT dwyersarah programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT edlinlinneam programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT evansrebeccaa programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT fluhartytaylor programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT frederickjanna programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT galeotasprungjonah programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT gammonbetsyl programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT grieshaberbrandon programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT gronnigerjessica programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT gutteridgekatelyn programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT henningsenjoel programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT isombradley programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT itellhannahl programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT keffelerericac programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT lantzandrewj programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT limjonathann programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT mcguireerinp programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT moorealexanderk programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT mortonjerrad programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT nakanomeredith programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT pearsonsaraa programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT perkinsvirginia programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT parrishphoebe programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT piersonclairee programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT polpityaarachchigesachith programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT quaneymichaelj programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT slatteryabagael programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT smithkathryne programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT spelljackson programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT spencermorgan programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT tayetelavive programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT truebloodkamay programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT vranacarolinej programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria
AT whitesidesetucker programmedevolutionforoptimizationoforthogonalmetabolicoutputinbacteria