Cargando…

African Adders: Partial Characterization of Snake Venoms from Three Bitis Species of Medical Importance and Their Neutralization by Experimental Equine Antivenoms

BACKGROUND: An alarming number of fatal accidents involving snakes are annually reported in Africa and most of the victims suffer from permanent local tissue damage and chronic disabilities. Envenomation by snakes belonging to the genus Bitis, Viperidae family, are common in Sub-Saharan Africa. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Paixão-Cavalcante, Danielle, Kuniyoshi, Alexandre K., Portaro, Fernanda C. V., da Silva, Wilmar Dias, Tambourgi, Denise V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340965/
https://www.ncbi.nlm.nih.gov/pubmed/25643358
http://dx.doi.org/10.1371/journal.pntd.0003419
Descripción
Sumario:BACKGROUND: An alarming number of fatal accidents involving snakes are annually reported in Africa and most of the victims suffer from permanent local tissue damage and chronic disabilities. Envenomation by snakes belonging to the genus Bitis, Viperidae family, are common in Sub-Saharan Africa. The accidents are severe and the victims often have a poor prognosis due to the lack of effective specific therapies. In this study we have biochemically characterized venoms from three different species of Bitis, i.e., Bitis arietans, Bitis gabonica rhinoceros and Bitis nasicornis, involved in the majority of the human accidents in Africa, and analyzed the in vitro neutralizing ability of two experimental antivenoms. METHODOLOGY/PRINCIPAL FINDINGS: The data indicate that all venoms presented phospholipase, hyaluronidase and fibrinogenolytic activities and cleaved efficiently the FRET substrate Abz-RPPGFSPFRQ-EDDnp and angiotensin I, generating angiotensin 1–7. Gelatinolytic activity was only observed in the venoms of B. arietans and B. nasicornis. The treatment of the venoms with protease inhibitors indicated that Bitis venoms possess metallo and serinoproteases enzymes, which may be involved in the different biological activities here evaluated. Experimental antivenoms produced against B. arietans venom or Bitis g. rhinoceros plus B. nasicornis venoms cross-reacted with the venoms from the three species and blocked, in different degrees, all the enzymatic activities in which they were tested. CONCLUSION: These results suggest that the venoms of the three Bitis species, involved in accidents with humans in the Sub-Saharan Africa, contain a mixture of various enzymes that may act in the generation and development of some of the clinical manifestations of the envenomations. We also demonstrated that horse antivenoms produced against B. arietans or B. g. rhinoceros plus B. nasicornis venoms can blocked some of the toxic activities of these venoms.