Cargando…

Effects of Dietary Cellulose on the Basal Endogenous Loss of Phosphorus in Growing Pigs

An experiment was conducted to determine the effect of cellulose concentration in diets containing no phosphorus (P) on the basal endogenous loss (BEL) of P in growing pigs. Twelve barrows (an initial mean body weight = 49.6±3.2 kg) were individually housed in metabolism crates. Pigs were allotted t...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, A. R., Kim, B. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341081/
https://www.ncbi.nlm.nih.gov/pubmed/25656212
http://dx.doi.org/10.5713/ajas.14.0539
Descripción
Sumario:An experiment was conducted to determine the effect of cellulose concentration in diets containing no phosphorus (P) on the basal endogenous loss (BEL) of P in growing pigs. Twelve barrows (an initial mean body weight = 49.6±3.2 kg) were individually housed in metabolism crates. Pigs were allotted to 4 experimental diets according to a cross-over design with 12 animals and 2 periods. Four P-free diets were mainly based on corn starch, sucrose, and gelatin, and were formulated to contain 0%, 4%, 8%, or 12% cellulose. Each period consisted of a 5-d adaptation and a 5-d collection period. The marker-to-marker method was used for fecal collection. The feed intake (p<0.05, linear and quadratic) and dry feces output (p<0.01, linear and quadratic) were increased with increasing dietary cellulose concentration. However, P concentration in the feces was decreased (p<0.01, linear and quadratic) with increasing dietary cellulose concentration. There was no significant difference in total P output and the BEL of P as mg per kg DMI (ranging from 157 to 214 mg/kg of dry matter intake) among experimental diets. However, values for the apparent total tract digestibility of energy, dry matter, organic matter, crude protein, and calcium were linearly decreased (p<0.01) with increasing cellulose concentration in the diet. In conclusion, dietary cellulose affected the amount of feces and digestibility of energy and nutrients, but did not affect the endogenous loss of P.