Cargando…
A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive m...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342252/ https://www.ncbi.nlm.nih.gov/pubmed/25719734 http://dx.doi.org/10.1371/journal.pone.0116973 |
_version_ | 1782359262801952768 |
---|---|
author | Leal Valentim, Felipe van Mourik, Simon Posé, David Kim, Min C. Schmid, Markus van Ham, Roeland C. H. J. Busscher, Marco Sanchez-Perez, Gabino F. Molenaar, Jaap Angenent, Gerco C. Immink, Richard G. H. van Dijk, Aalt D. J. |
author_facet | Leal Valentim, Felipe van Mourik, Simon Posé, David Kim, Min C. Schmid, Markus van Ham, Roeland C. H. J. Busscher, Marco Sanchez-Perez, Gabino F. Molenaar, Jaap Angenent, Gerco C. Immink, Richard G. H. van Dijk, Aalt D. J. |
author_sort | Leal Valentim, Felipe |
collection | PubMed |
description | Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time. |
format | Online Article Text |
id | pubmed-4342252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43422522015-03-04 A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network Leal Valentim, Felipe van Mourik, Simon Posé, David Kim, Min C. Schmid, Markus van Ham, Roeland C. H. J. Busscher, Marco Sanchez-Perez, Gabino F. Molenaar, Jaap Angenent, Gerco C. Immink, Richard G. H. van Dijk, Aalt D. J. PLoS One Research Article Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time. Public Library of Science 2015-02-26 /pmc/articles/PMC4342252/ /pubmed/25719734 http://dx.doi.org/10.1371/journal.pone.0116973 Text en © 2015 Leal Valentim et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Leal Valentim, Felipe van Mourik, Simon Posé, David Kim, Min C. Schmid, Markus van Ham, Roeland C. H. J. Busscher, Marco Sanchez-Perez, Gabino F. Molenaar, Jaap Angenent, Gerco C. Immink, Richard G. H. van Dijk, Aalt D. J. A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title | A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title_full | A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title_fullStr | A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title_full_unstemmed | A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title_short | A Quantitative and Dynamic Model of the Arabidopsis Flowering Time Gene Regulatory Network |
title_sort | quantitative and dynamic model of the arabidopsis flowering time gene regulatory network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342252/ https://www.ncbi.nlm.nih.gov/pubmed/25719734 http://dx.doi.org/10.1371/journal.pone.0116973 |
work_keys_str_mv | AT lealvalentimfelipe aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vanmouriksimon aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT posedavid aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT kimminc aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT schmidmarkus aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vanhamroelandchj aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT busschermarco aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT sanchezperezgabinof aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT molenaarjaap aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT angenentgercoc aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT imminkrichardgh aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vandijkaaltdj aquantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT lealvalentimfelipe quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vanmouriksimon quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT posedavid quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT kimminc quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT schmidmarkus quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vanhamroelandchj quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT busschermarco quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT sanchezperezgabinof quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT molenaarjaap quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT angenentgercoc quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT imminkrichardgh quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork AT vandijkaaltdj quantitativeanddynamicmodelofthearabidopsisfloweringtimegeneregulatorynetwork |