Cargando…
Efficient Bayesian mixed model analysis increases association power in large cohorts
Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN(2)) (where N = #samples and M = #SNPs...
Autores principales: | Loh, Po-Ru, Tucker, George, Bulik-Sullivan, Brendan K, Vilhjálmsson, Bjarni J, Finucane, Hilary K, Salem, Rany M, Chasman, Daniel I, Ridker, Paul M, Neale, Benjamin M, Berger, Bonnie, Patterson, Nick, Price, Alkes L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342297/ https://www.ncbi.nlm.nih.gov/pubmed/25642633 http://dx.doi.org/10.1038/ng.3190 |
Ejemplares similares
-
An Atlas of Genetic Correlations across Human Diseases and Traits
por: Bulik-Sullivan, Brendan, et al.
Publicado: (2015) -
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis
por: Loh, Po-Ru, et al.
Publicado: (2015) -
Functional architecture of low-frequency variants highlights strength
of negative selection across coding and noncoding annotations
por: Gazal, Steven, et al.
Publicado: (2018) -
Partitioning heritability by functional annotation using genome-wide association summary statistics
por: Finucane, Hilary K., et al.
Publicado: (2015) -
Incorporating family history of disease improves polygenic risk scores in diverse populations
por: Hujoel, Margaux L.A., et al.
Publicado: (2022)