Cargando…
Effectiveness of a Web-Based, Computer-Tailored, Pedometer-Based Physical Activity Intervention for Adults: A Cluster Randomized Controlled Trial
BACKGROUND: Computer-tailored physical activity (PA) interventions delivered through the Internet represent a promising and appealing method to promote PA at a population level. However, personalized advice is mostly provided based on subjectively measured PA, which is not very accurate and might re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342625/ https://www.ncbi.nlm.nih.gov/pubmed/25665498 http://dx.doi.org/10.2196/jmir.3402 |
Sumario: | BACKGROUND: Computer-tailored physical activity (PA) interventions delivered through the Internet represent a promising and appealing method to promote PA at a population level. However, personalized advice is mostly provided based on subjectively measured PA, which is not very accurate and might result in the delivery of advice that is not credible or effective. Therefore, an innovative computer-tailored PA advice was developed, based on objectively pedometer-measured PA. OBJECTIVE: The study aim was to evaluate the effectiveness of a computer-tailored, pedometer-based PA intervention in working adults. METHODS: Participants (≥18 years) were recruited between May and December 2012 from eight Flemish workplaces. These workplaces were allocated randomly to an intervention or control group. Intervention group participants (n=137) received (1) a booklet with information on how to increase their steps, (2) a non-blinded pedometer, and (3) an Internet link to request computer-tailored step advice. Control group participants (n=137) did not receive any of the intervention components. Self-reported and pedometer-based PA were assessed at baseline (T0), and 1 month (T1) and 3 months (T2) months post baseline. Repeated measures analyses of covariance were used to examine intervention effects for both the total sample and the at-risk sample (ie, adults not reaching 10,000 steps a day at baseline). RESULTS: The recruitment process resulted in 274 respondents (response rate of 15.1%) who agreed to participate, of whom 190 (69.3%) belonged to the at-risk sample. Between T0 and T1 (1-month post baseline), significant intervention effects were found for participants’ daily step counts in both the total sample (P=.004) and the at-risk sample (P=.001). In the at-risk sample, the intervention effects showed a daily step count increase of 1056 steps in the intervention group, compared to a decrease of 258 steps in the control group. Comparison of participants’ self-reported PA revealed a significant intervention effect for time spent walking in the at-risk sample (P=.02). Intervention effects were still significant 3 months post baseline for participants’ daily step counts in both the total sample (P=.03) and the at-risk sample (P=.02); however, self-reported PA differences were no longer significant. CONCLUSIONS: A computer-tailored, pedometer-based PA intervention was effective in increasing both pedometer-based and self-reported PA levels, mainly in the at-risk participants. However, more effort should be devoted to recruit and retain participants in order to improve the public health impact of the intervention. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02080585; https://clinicaltrials.gov/ct2/show/NCT02080585 (Archived by WebCite at http://www.webcitation.org/6VvQnRQSy). |
---|