Cargando…
A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water
BACKGROUND: Water and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342816/ https://www.ncbi.nlm.nih.gov/pubmed/25888294 http://dx.doi.org/10.1186/s12896-015-0124-1 |
_version_ | 1782359325073735680 |
---|---|
author | Minogue, Elizabeth Tuite, Nina L Smith, Cindy J Reddington, Kate Barry, Thomas |
author_facet | Minogue, Elizabeth Tuite, Nina L Smith, Cindy J Reddington, Kate Barry, Thomas |
author_sort | Minogue, Elizabeth |
collection | PubMed |
description | BACKGROUND: Water and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testing of HPW is performed using slow and labour intensive traditional microbiological based techniques. There is a need to develop a rapid culture independent methodology to quantitatively detect and identify biocontamination associated with HPW. RESULTS: A novel internally controlled 5-plex real-time PCR Nucleic Acid Diagnostics assay (NAD), was designed and optimised in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, to rapidly detect, identify and quantify the human pathogenic bacteria Stenotrophomonas maltophilia, Burkholderia species, Pseudomonas aeruginosa and Serratia marcescens which are commonly associated with the biocontamination of water and water distribution systems. The specificity of the 5-plex assay was tested against genomic DNA isolated from a panel of 95 microorganisms with no cross reactivity observed. The analytical sensitivities of the S. maltophilia, B. cepacia, P. aeruginosa and the S. marcescens assays are 8.5, 5.7, 3.2 and 7.4 genome equivalents respectively. Subsequently, an analysis of HPW supplied by a Millipore Elix 35 water purification unit performed using standard microbiological methods revealed high levels of naturally occurring microbiological contamination. Five litre water samples from this HPW delivery system were also filtered and genomic DNA was purified directly from these filters. These DNA samples were then tested using the developed multiplex real-time PCR NAD assay and despite the high background microbiological contamination observed, both S. maltophilia and Burkholderia species were quantitatively detected and identified. At both sampling points the levels of both S. maltophilia and Burkholderia species present was above the threshold of 10 cfu/100 ml recommended by both EU and US guidelines. CONCLUSIONS: The novel culture independent methodology described in this study allows for rapid (<5 h), quantitative detection and identification of these four human pathogens from biocontaminated water and HPW distribution systems. We propose that the described NAD assay and associated methodology could be applied to routine testing of water and HPW distribution systems to assure microbiological safety and high water quality standards. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-015-0124-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4342816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43428162015-02-28 A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water Minogue, Elizabeth Tuite, Nina L Smith, Cindy J Reddington, Kate Barry, Thomas BMC Biotechnol Methodology Article BACKGROUND: Water and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testing of HPW is performed using slow and labour intensive traditional microbiological based techniques. There is a need to develop a rapid culture independent methodology to quantitatively detect and identify biocontamination associated with HPW. RESULTS: A novel internally controlled 5-plex real-time PCR Nucleic Acid Diagnostics assay (NAD), was designed and optimised in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, to rapidly detect, identify and quantify the human pathogenic bacteria Stenotrophomonas maltophilia, Burkholderia species, Pseudomonas aeruginosa and Serratia marcescens which are commonly associated with the biocontamination of water and water distribution systems. The specificity of the 5-plex assay was tested against genomic DNA isolated from a panel of 95 microorganisms with no cross reactivity observed. The analytical sensitivities of the S. maltophilia, B. cepacia, P. aeruginosa and the S. marcescens assays are 8.5, 5.7, 3.2 and 7.4 genome equivalents respectively. Subsequently, an analysis of HPW supplied by a Millipore Elix 35 water purification unit performed using standard microbiological methods revealed high levels of naturally occurring microbiological contamination. Five litre water samples from this HPW delivery system were also filtered and genomic DNA was purified directly from these filters. These DNA samples were then tested using the developed multiplex real-time PCR NAD assay and despite the high background microbiological contamination observed, both S. maltophilia and Burkholderia species were quantitatively detected and identified. At both sampling points the levels of both S. maltophilia and Burkholderia species present was above the threshold of 10 cfu/100 ml recommended by both EU and US guidelines. CONCLUSIONS: The novel culture independent methodology described in this study allows for rapid (<5 h), quantitative detection and identification of these four human pathogens from biocontaminated water and HPW distribution systems. We propose that the described NAD assay and associated methodology could be applied to routine testing of water and HPW distribution systems to assure microbiological safety and high water quality standards. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-015-0124-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-02-18 /pmc/articles/PMC4342816/ /pubmed/25888294 http://dx.doi.org/10.1186/s12896-015-0124-1 Text en © Minogue et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Minogue, Elizabeth Tuite, Nina L Smith, Cindy J Reddington, Kate Barry, Thomas A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title | A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title_full | A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title_fullStr | A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title_full_unstemmed | A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title_short | A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
title_sort | rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342816/ https://www.ncbi.nlm.nih.gov/pubmed/25888294 http://dx.doi.org/10.1186/s12896-015-0124-1 |
work_keys_str_mv | AT minogueelizabeth arapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT tuiteninal arapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT smithcindyj arapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT reddingtonkate arapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT barrythomas arapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT minogueelizabeth rapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT tuiteninal rapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT smithcindyj rapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT reddingtonkate rapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater AT barrythomas rapidcultureindependentmethodologytoquantitativelydetectandidentifycommonhumanbacterialpathogensassociatedwithcontaminatedhighpuritywater |