Cargando…

The mitochondrial aspartate/glutamate carrier isoform 1 gene expression is regulated by CREB in neuronal cells

The aspartate/glutamate carrier isoform 1 is an essential mitochondrial transporter that exchanges intramitochondrial aspartate and cytosolic glutamate across the inner mitochondrial membrane. It is expressed in brain, heart and muscle and is involved in important biological processes, including mye...

Descripción completa

Detalles Bibliográficos
Autores principales: Menga, Alessio, Iacobazzi, Vito, Infantino, Vittoria, Avantaggiati, Maria Laura, Palmieri, Ferdinando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344217/
https://www.ncbi.nlm.nih.gov/pubmed/25597433
http://dx.doi.org/10.1016/j.biocel.2015.01.004
Descripción
Sumario:The aspartate/glutamate carrier isoform 1 is an essential mitochondrial transporter that exchanges intramitochondrial aspartate and cytosolic glutamate across the inner mitochondrial membrane. It is expressed in brain, heart and muscle and is involved in important biological processes, including myelination. However, the signals that regulate the expression of this transporter are still largely unknown. In this study we first identify a CREB binding site within the aspartate/glutamate carrier gene promoter that acts as a strong enhancer element in neuronal SH-SY5Y cells. This element is regulated by active, phosphorylated CREB protein and by signal pathways that modify the activity of CREB itself and, most noticeably, by intracellular Ca(2+) levels. Specifically, aspartate/glutamate carrier gene expression is induced via CREB by forskolin while it is inhibited by the PKA inhibitor, H89. Furthermore, the CREB-induced activation of gene expression is increased by thapsigargin, which enhances cytosolic Ca(2+), while it is inhibited by BAPTA-AM that reduces cytosolic Ca(2+) or by STO-609, which inhibits CaMK-IV phosphorylation. We further show that CREB-dependent regulation of aspartate/glutamate carrier gene expression occurs in neuronal cells in response to pathological (inflammation) and physiological (differentiation) conditions. Since this carrier is necessary for neuronal functions and is involved in myelinogenesis, our results highlight that targeting of CREB activity and Ca(2+) might be therapeutically exploited to increase aspartate/glutamate carrier gene expression in neurodegenerative diseases.