Cargando…
Regulation of mammalian nucleotide metabolism and biosynthesis
Nucleotides are required for a wide variety of biological processes and are constantly synthesized denovo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344498/ https://www.ncbi.nlm.nih.gov/pubmed/25628363 http://dx.doi.org/10.1093/nar/gkv047 |
_version_ | 1782359423066308608 |
---|---|
author | Lane, Andrew N Fan, Teresa W-M |
author_facet | Lane, Andrew N Fan, Teresa W-M |
author_sort | Lane, Andrew N |
collection | PubMed |
description | Nucleotides are required for a wide variety of biological processes and are constantly synthesized denovo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer. |
format | Online Article Text |
id | pubmed-4344498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43444982015-03-17 Regulation of mammalian nucleotide metabolism and biosynthesis Lane, Andrew N Fan, Teresa W-M Nucleic Acids Res Survey and Summary Nucleotides are required for a wide variety of biological processes and are constantly synthesized denovo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer. Oxford University Press 2015-02-27 2015-01-27 /pmc/articles/PMC4344498/ /pubmed/25628363 http://dx.doi.org/10.1093/nar/gkv047 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Survey and Summary Lane, Andrew N Fan, Teresa W-M Regulation of mammalian nucleotide metabolism and biosynthesis |
title | Regulation of mammalian nucleotide metabolism and biosynthesis |
title_full | Regulation of mammalian nucleotide metabolism and biosynthesis |
title_fullStr | Regulation of mammalian nucleotide metabolism and biosynthesis |
title_full_unstemmed | Regulation of mammalian nucleotide metabolism and biosynthesis |
title_short | Regulation of mammalian nucleotide metabolism and biosynthesis |
title_sort | regulation of mammalian nucleotide metabolism and biosynthesis |
topic | Survey and Summary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344498/ https://www.ncbi.nlm.nih.gov/pubmed/25628363 http://dx.doi.org/10.1093/nar/gkv047 |
work_keys_str_mv | AT laneandrewn regulationofmammaliannucleotidemetabolismandbiosynthesis AT fanteresawm regulationofmammaliannucleotidemetabolismandbiosynthesis |