Cargando…

Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined t...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Zhengyu, Li, Xichun, Zou, Xiaohan, Greenwood, Michael, Gerwick, William H., Murray, Thomas F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344608/
https://www.ncbi.nlm.nih.gov/pubmed/25675001
http://dx.doi.org/10.3390/md13020903
Descripción
Sumario:The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC(50) value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH) efflux, nuclear condensation and caspase-3 activity with EC(50) values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.