Cargando…
The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells
Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding prop...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344658/ https://www.ncbi.nlm.nih.gov/pubmed/25648173 http://dx.doi.org/10.3390/ijerph120201112 |
_version_ | 1782359459069165568 |
---|---|
author | Teske, Sondra S. Detweiler, Corrella S. |
author_facet | Teske, Sondra S. Detweiler, Corrella S. |
author_sort | Teske, Sondra S. |
collection | PubMed |
description | Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems. |
format | Online Article Text |
id | pubmed-4344658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-43446582015-03-18 The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells Teske, Sondra S. Detweiler, Corrella S. Int J Environ Res Public Health Review Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems. MDPI 2015-01-22 2015-02 /pmc/articles/PMC4344658/ /pubmed/25648173 http://dx.doi.org/10.3390/ijerph120201112 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Teske, Sondra S. Detweiler, Corrella S. The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title | The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title_full | The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title_fullStr | The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title_full_unstemmed | The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title_short | The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells |
title_sort | biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344658/ https://www.ncbi.nlm.nih.gov/pubmed/25648173 http://dx.doi.org/10.3390/ijerph120201112 |
work_keys_str_mv | AT teskesondras thebiomechanismsofmetalandmetaloxidenanoparticlesinteractionswithcells AT detweilercorrellas thebiomechanismsofmetalandmetaloxidenanoparticlesinteractionswithcells AT teskesondras biomechanismsofmetalandmetaloxidenanoparticlesinteractionswithcells AT detweilercorrellas biomechanismsofmetalandmetaloxidenanoparticlesinteractionswithcells |