Cargando…
Hybrid clustering for microarray image analysis combining intensity and shape features
BACKGROUND: Image analysis is the first crucial step to obtain reliable results from microarray experiments. First, areas in the image belonging to single spots have to be identified. Then, those target areas have to be partitioned into foreground and background. Finally, two scalar values for the i...
Autores principales: | Rahnenführer, Jörg, Bozinov, Daniel |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC434489/ https://www.ncbi.nlm.nih.gov/pubmed/15117421 http://dx.doi.org/10.1186/1471-2105-5-47 |
Ejemplares similares
-
Preprocessing differential methylation hybridization microarray data
por: Sun, Shuying, et al.
Publicado: (2011) -
Visualization methods for statistical analysis of microarray clusters
por: Hibbs, Matthew A, et al.
Publicado: (2005) -
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2021) -
Cost-Constrained feature selection in binary classification: adaptations for greedy forward selection and genetic algorithms
por: Jagdhuber, Rudolf, et al.
Publicado: (2020) -
A comparative analysis of DNA barcode microarray feature size
por: Ammar, Ron, et al.
Publicado: (2009)