Cargando…
IPred - integrating ab initio and evidence based gene predictions to improve prediction accuracy
BACKGROUND: Gene prediction is a challenging but crucial part in most genome analysis pipelines. Various methods have evolved that predict genes ab initio on reference sequences or evidence based with the help of additional information, such as RNA-Seq reads or EST libraries. However, none of these...
Autores principales: | Zickmann, Franziska, Renard, Bernhard Y |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345001/ https://www.ncbi.nlm.nih.gov/pubmed/25766582 http://dx.doi.org/10.1186/s12864-015-1315-9 |
Ejemplares similares
-
PreDisorder: ab initio sequence-based prediction of protein disordered regions
por: Deng, Xin, et al.
Publicado: (2009) -
CONFOLD2: improved contact-driven ab initio protein structure modeling
por: Adhikari, Badri, et al.
Publicado: (2018) -
MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms
por: Zickmann, Franziska, et al.
Publicado: (2015) -
SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models
por: Reid, Ian, et al.
Publicado: (2014) -
Accurate plant pathogen effector protein classification ab initio with deepredeff: an ensemble of convolutional neural networks
por: Kristianingsih, Ruth, et al.
Publicado: (2021)