Cargando…
The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs
BACKGROUND: Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential rel...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345017/ https://www.ncbi.nlm.nih.gov/pubmed/25766668 http://dx.doi.org/10.1186/s12864-015-1257-2 |
_version_ | 1782359513512280064 |
---|---|
author | Castellano, Leandro Rizzi, Ermanno Krell, Jonathan Di Cristina, Manlio Galizi, Roberto Mori, Ayako Tam, Janis De Bellis, Gianluca Stebbing, Justin Crisanti, Andrea Nolan, Tony |
author_facet | Castellano, Leandro Rizzi, Ermanno Krell, Jonathan Di Cristina, Manlio Galizi, Roberto Mori, Ayako Tam, Janis De Bellis, Gianluca Stebbing, Justin Crisanti, Andrea Nolan, Tony |
author_sort | Castellano, Leandro |
collection | PubMed |
description | BACKGROUND: Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. RESULTS: We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3’UTR of protein coding genes. Unusually, many TEs and the 3’UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. CONCLUSIONS: This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1257-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4345017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43450172015-03-02 The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs Castellano, Leandro Rizzi, Ermanno Krell, Jonathan Di Cristina, Manlio Galizi, Roberto Mori, Ayako Tam, Janis De Bellis, Gianluca Stebbing, Justin Crisanti, Andrea Nolan, Tony BMC Genomics Research Article BACKGROUND: Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. RESULTS: We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3’UTR of protein coding genes. Unusually, many TEs and the 3’UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. CONCLUSIONS: This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1257-2) contains supplementary material, which is available to authorized users. BioMed Central 2015-02-19 /pmc/articles/PMC4345017/ /pubmed/25766668 http://dx.doi.org/10.1186/s12864-015-1257-2 Text en © Castellano et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Castellano, Leandro Rizzi, Ermanno Krell, Jonathan Di Cristina, Manlio Galizi, Roberto Mori, Ayako Tam, Janis De Bellis, Gianluca Stebbing, Justin Crisanti, Andrea Nolan, Tony The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title | The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title_full | The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title_fullStr | The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title_full_unstemmed | The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title_short | The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs |
title_sort | germline of the malaria mosquito produces abundant mirnas, endo-sirnas, pirnas and 29-nt small rnas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345017/ https://www.ncbi.nlm.nih.gov/pubmed/25766668 http://dx.doi.org/10.1186/s12864-015-1257-2 |
work_keys_str_mv | AT castellanoleandro thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT rizziermanno thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT krelljonathan thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT dicristinamanlio thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT galiziroberto thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT moriayako thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT tamjanis thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT debellisgianluca thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT stebbingjustin thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT crisantiandrea thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT nolantony thegermlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT castellanoleandro germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT rizziermanno germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT krelljonathan germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT dicristinamanlio germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT galiziroberto germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT moriayako germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT tamjanis germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT debellisgianluca germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT stebbingjustin germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT crisantiandrea germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas AT nolantony germlineofthemalariamosquitoproducesabundantmirnasendosirnaspirnasand29ntsmallrnas |